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More Stream-Mining

Counting How Many Elements

Computing “Moments”
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Counting Distinct Elements

�Problem: a data stream consists of 
elements chosen from a set of size n.  
Maintain a count of the number of 
distinct elements seen so far.

�Obvious approach: maintain the set of 
elements seen.
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Applications

�How many different words are found 
among the Web pages being crawled at 
a site?

� Unusually low or high numbers could 
indicate artificial pages (spam?).

�How many different Web pages does 
each customer request in a week?
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Using Small Storage

�Real Problem: what if we do not have 
space to store the complete set?

�Estimate the count in an unbiased way.

�Accept that the count may be in error, 
but limit the probability that the error is 
large.
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Flajolet-Martin* Approach

�Pick a hash function h that maps each of 
the n elements to log2n bits, uniformly.

� Important that the hash function be (almost) 
a random permutation of the elements.

�For each stream element a, let r (a ) be 
the number of trailing 0’s in h (a ).

�Record R = the maximum r (a ) seen.

�Estimate = 2R.
* Really based on a variant due to AMS (Alon, Matias, and Szegedy) 
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Why It Works

�The probability that a given h (a ) ends in 
at least r  0’s is 2-r.

�If there are m different elements, the 
probability that R ≥ r is 1 – (1 - 2-r )m.

Prob. a given h(a)
ends in fewer than
r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.
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Why It Works --- (2)

�Since 2-r is small, (1-2-r)m ≈ e -m2   .

�If 2r >> m, 1 – (1 - 2-r )m ≈ 1 – (1 - m2-r)

≈ m /2r ≈ 0.

�If 2r << m, 1 – (1 - 2-r )m ≈ 1 – e -m2   ≈

1.

�Thus, 2R will almost always be around m.

-r

-r

First 2 terms of the
Taylor expansion of e x
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Why It Doesn’t Work

�E(2R ) is actually infinite.

� Probability halves when R -> R +1, but 
value doubles. 

�Workaround involves using many hash 
functions and getting many samples.

�How are samples combined?

� Average? What if one very large value?

�Median? All values are a power of 2.
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Solution

�Partition your samples into small 
groups.

�Take the average of groups.

�Then take the median of the averages.
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Moments (New Topic)

�Suppose a stream has elements chosen 
from a set of n values.

�Let mi be the number of times value i
occurs.

�The k th moment is the sum of (mi )
k

over all i.
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Special Cases

�0th moment = number of different 
elements in the stream.

� The problem just considered.

�1st moment = sum of the numbers of 
elements = length of the stream.

� Easy to compute.

�2nd moment = surprise number = a 
measure of how uneven the distribution is.
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Example: Surprise Number

�Stream of length 100; 11 values 
appear.

�Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 
9, 9.  Surprise # = 910.

�Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 
1.  Surprise # = 8,110.
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AMS Method

�Works for all moments; gives an 
unbiased estimate.

�We’ll just concentrate on 2nd moment.

�Based on calculation of many random 
variables X.

� Each requires a count in main memory, so 
number is limited.
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One Random Variable

�Assume stream has length n.

�Pick a random time to start, so that any 
time is equally likely.

�Let the chosen time have element a in 
the stream.

�X = n * ((twice the number of a ’s in the 
stream starting at the chosen time) – 1).

� Note: just store the count.
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Expected Value of X

�2nd moment is Σa (ma )
2.

�E(X ) = (1/n )(Σall times t n * (twice the 

number of times the stream element at 

time t appears from that time on) – 1).
�= Σa (1/n)(n )(1+3+5+…+2ma-1) .

�= Σa (ma )
2.
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Combining Samples

�Compute as many variables X as can fit 
in available memory.

�Average them in groups.

�Take median of averages.

�Proper balance of group sizes and number 
of groups assures not only correct 
expected value, but expected error goes 
to 0 as number of samples gets large.



17

Problem: Streams Never End

�We assumed there was a number n, 
the number of positions in the stream.

�But real streams go on forever, so n is 
a variable --- the number of inputs seen 
so far.
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Fixups

1. The variables X have n as a factor ---
keep n separately; just hold the count 
in X.

2. Suppose we can only store k counts.  
We must throw some X ’s out as time 
goes on.

� Objective: each starting time t is 
selected with probability k / n.
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Solution to (2)

�Choose the first k times for k
variables.

�When the n th element arrives (n > k ), 
choose it with probability k / n.

�If you choose it, throw one of the 
previously stored variables out, with 
equal probability.


