More Stream-Mining

Counting How Many Elements
Computing “Moments”

Counting Distinct Elements

¢ : a data stream consists of
elements chosen from a set of size .
Maintain a count of the number of
distinct elements seen so far.

¢ : maintain the set of
elements seen.

Applications

€ How many different words are found
among the Web pages being crawled at
a site?
» Unusually low or high numbers could
indicate artificial pages (spam?).
€ How many different Web pages does
each customer request in a week?

Using Small Storage

¢ : what if we do not have
space to store the complete set?

Estimate the count in an unbiased way.

@ Accept that the count may be in error,
but limit the probability that the error is
large.

Flajolet-Martin* Approach

® Pick a hash function /# that maps each of
the n elements to log,n bits, uniformly.

* Important that the hash function be (almost)
a random permutation of the elements.

@ For each stream element g, let r(a) be
the number of trailing 0's in /2 (a).

® Record R = the maximum r(a) seen.
@ Estimate = 2%

* Really based on a variant due to AMS (Alon, Matias, and Szegedy) 2

Why It Works

The probability that a given /2 (a) ends in
at least r O's is 2.

¢ If there are m different eler
probability that R > r is 1 —

, the

T

Prob. a given h(a)
ends in fewer than
r 0's.

| (D
>
N

Prob. all h(a)’s

end in fewer than
r 0's.

Why It Works --- (2)

@®Since 2 is small, (1-2)™ ~ e M2

QIf2’'>>m1-(1-2")"=1-(1-m2"
~ m/[2'= 0. -

QIf2r<<ml-(1-2")"rl-e™ &
1.

@ Thus, 2% will almost always be around m.

Why It Doesn’t Work

®E(27) is actually infinite.

* Probability
value doub

halves when R-> R +1, but
es.

€ Workaround involves using many hash
functions and getting many samples.
€ How are samples combined?
¢ ? What if one very large value?
. ? All values are a power of 2.

Solution

Partition your samples into small
groups.

& Take the average of groups.
Then take the median of the averages.

Moments (New Topic)

€ Suppose a stream has elements chosen
from a set of 7 values.

®Let m; be the number of times value /
OCCuUrs.

®The £™ moment is the sum of (m;,)*
over all 7.

10

Special Cases

€ 0™ moment = number of different
elements in the stream.

* The problem just considered.

@ 15t moment = sum of the numbers of
elements = length of the stream.
+ Easy to compute.

& 2" moment = surprise number = a
measure of how uneven the distribution is.

11

: Surprise Number

@ Stream of length 100; 11 values
appear.

¢ :10,9,9,9,9,9,9, 9, 9,
9, 9. Surprise # = 910.
¢ :90,1,1,1,1,1,1,1,1,1,

1. Surprise # = 8,110.

12

AMS Method

@ Works for all moments; gives an
unbiased estimate.

@ We'll just concentrate on 2" moment.

€ Based on calculation of many random
variables X.

+ Each requires a count in main memory, so
number is limited.

13

One Random Variable

® Assume stream has length n.

® Pick a random time to start, so that any
time is equally likely.

@ Let the chosen time have element & in
the stream.

® X = n* ((twice the number of = ’s in the
stream starting at the chosen time) — 1).
. : just store the count.

14

Expected Value of X

€ 2" momentis > (m.)2

OE(X) = (1/n) (2, times » 1 * (twice the
number of times the stream element at
time ¢ appears from that time on) — 1).

®=> (1/n(n)1+3+5+...4+2m-1).

®=3> (m,)

15

Combining Samples

€ Compute as many variables X as can fit
in available memory.

® Average them in groups.
Take median of averages.

@ Proper balance of group sizes and number
of groups assures not only correct
expected value, but expected error goes
to 0 as number of samples gets large.

16

: Streams Never End

€& We assumed there was a number 7,
the number of positions in the stream.

But real streams go on forever, so n is
a variable --- the number of inputs seen
so far.

17

FIXups

1. The variables X have n as a factor ---

keep n separately; just hold the count
In X.

2. Suppose we can only store & counts.
We must throw some X's out as time
goes on.

+ Objective: each starting time ¢ is
selected with probability &/ n.

18

Solution to (2)

® Choose the first & times for k
variables.

€& When the nt element arrives (n > k),
choose it with probability &/ n.

@ If you choose it, throw one of the
previously stored variables out, with
equal probability.

19

