
Data-Driven Networking: Harnessing the
“Unreasonable Effectiveness of Data” in

Network Design
Junchen Jiang∗ Vyas Sekar∗ Ion Stoica4†\

Hui Zhang∗†

February 2016
CMU-CS-16-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Carnegie Mellon University
4University of California, Berkeley
†Conviva Inc.
\Databricks Inc.

This research was sponsored by the National Science Foundation under grant number CNS-1345305. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Data-Driven Networking, Network Architecture

Abstract

The last few years have witnessed the coming of age of data-driven paradigm in various aspects
of computing (partly) empowered by advances in distributed system research (cloud computing,
MapReduce, etc). In this paper, we observe that the benefits can flow the opposite direction: the
design of distributed systems can be improved by data-driven paradigm. To this end, we present
DDN, a new design framework for network protocols based on data-driven paradigm. We argue
that DDN has the potential to significantly achieve better performance through harnessing more
data than one single flow. Furthermore, we systematize existing instantiations of DDN by creating
a unified framework for DDN, and use the framework to shed light on the common challenges and
reusable design principles. We believe that by systematizing this paradigm as a broader commu-
nity, we can unleash the unharnessed potential of DDN.

1 Introduction
There is a revolution afoot in various aspects of computing driven by the ability to collect and
extract “valuable insights” from large corpuses of data [2]. This “unreasonable effectiveness of
data” [9] has sparked a radical rethink of how algorithms are designed—Rather than use human
experts spending huge amounts of time and effort to craft sophisticated algorithms and complex
models, we see data-driven models used that yield dramatically better results, and often with much
simpler algorithms. Furthermore, this has opened new vistas to address grand challenge problems
(e.g., NLP, speech, translation) that were previously considered unattainable.

We are seeing early evidence of this paradigm shift starting to reach the shores of networking
motivated by two key technology trends. First, we observe a growing decision space of potential
control decisions to optimize the performance of various network applications. For instance, recent
work on C3 [7] shows how a logically centralized video control plane can take advantage of global
visibility of network conditions to optimally tune “knobs” at the application layer w.r.t. CDN and
bitrate selection. Second, we see increasing heterogeneity in operating conditions and application
requirements, each requiring different control logic and parameters. For instance, recent work
on Remy [26], shows how a machine-derived TCP could be tweaked to work better in different
operating conditions.

This paper is a call-for-arms for the networking community to recognize and embrace this
emerging data-driven networking (DDN) paradigm. Figure 1 conceptualizes the DDN paradigm
and how it differs from traditional network design paradigms. In contrast to today’s network de-
signs that use only local data of a single flow with handwritten control logics, DDN suggests using
more data from multiple flows and other sources, in order to make optimal control decisions.

Manually'configured'
control'logic'

Local'info'on'
single'flow'

Control'
decisions'

(a) Non-DDN control loop

Control'logics'driven'
by'massive'data'

Info'on'
mul,ple'flows'

Control'
decisions'

(b) DDN-enabled control loop

Figure 1: Comparing control loops of a protocol when DDN is applied or not.

Early instantiations of this emerging DDN paradigm have already demonstrated significant
potential benefits. We believe that by systematizing this paradigm as a broader community, we
can unleash the unharnessed potential of DDN. Specifically, by creating a unified framework and
broader community effort to think about DDN designs, we can uncover hitherto unexplored oppor-
tunities for DDN-inspired redesign of network applications and network protocols. Furthermore,
we believe that this can shed light on key challenges in realizing the potential for DDN and allow
us to extract a general set of reusable design principles and solutions to avoid the problem of each
effort reinventing the wheel or worse ignoring some potential pitfalls.

In this respect, this paper makes four key contributions:
• First, we highlight illustrative examples that use existing instantiations of DDN to show that

performance of today’s protocols benefits from harnessing more data (§2).
• Second, we systematize these point solutions by developing a general framework for DDN.

We use this framework to shed light on the existing instantiations of DDN and inspire new
opportunites (§3).

1

• Third, we use this framework to highlight common challenges of applying DDN to any pro-
tocol, that would otherwise be difficult to formalize if seen from the narrow lens of a specific
application. Moreover, we identify opportunities to develop general design guidelines to ad-
dress these challenges (§4).
• Finally, as a case study, we show applying DDN can dramatically improve the design and

performance of TCP, and use this case study to showcase potential solutions to the broader set
of DDN challenges (§5).

2 Illustrative Examples
We begin with illustrative examples of existing efforts that highlight the early promise of the DDN
paradigm.

2.1 Better CDN selection for video
The first example shows how quality measurements of many video sessions1 can optimize CDN
selection of individual video clients. Video players today have the flexibility of streaming content
from one of multiple CDNs. However, with only information on a single flow, it is hard to infer
the CDN of best performance without actually using each of them. Today, each video client is
statically mapped to a CDN (at least the one a client starts with). Given performance of CDNs has
a substantial diversity across geographical areas and temporal variability [19], there is a remarkable
room of improvement by dynamically mapping a client to a CDN.

One data-driven approach [7] to dynamic CDN selection is by exploiting quality measurements
of other (concurrent and history) video sessions. For instance, one can map a client to the CDN
that has the best quality on similar video clients (e.g., those in the same AS and watching the same
video content). In fact, prior work on C3 [7] showed a proof point of the viability and benefits of an
Internet video control platform that aggregates video quality measurements from millions of video
clients and uses them to inform CDN selection for future video clients. This operational system
achieves better video quality than traditional local adaptation approaches; e.g., 50% reduction in
the percentage of a session duration spent on re-buffering, while using similar bitrates.

2.2 Bitrate selection using TCP measurements
Ideally, a video player should pick the highest bitrate that is sustainable (i.e., below the throughput)
to minimize buffering and ensure high user experience of video streaming. However, it is hard
to accurately predict a session’s performance, especially during the startup phase before a video
session starts. Existing commercial approaches use either: (1) fixed bitrate for the duration of
a video, which is intentionally set low to minimize buffering due to bandwidth fluctuation, or
(2) even if they use adaptive bitrate streaming, start conservatively with a low bitrate and take a
significant time to reach the optimal birate.2

1We use “flow” and “session” interchangeably, depending on convention (e.g., TCP flow, video session).
2Neflix www.netflix.com/WiMovie/70136810?trkid=439131 takes roughly 25 seconds to switch

from the initial bitrate of 560kbps to the highest sustainable bitrate (3Mbps).

2

www.netflix.com/WiMovie/70136810?trkid=439131

Prediction error AvgBitrate % bitrate >
throughput

Today 2.5Mbps 11.8%
Data-driven
(Decision tree)

3.4% (median) 13Mpbs 9%

Table 1: Improvement of data-driven initial bitrate compared to static initial bitrate.

It might, however, be feasible to predict a video session’s throughput before it starts by us-
ing TCP throughput measured by other endpoints. Based on throughput predictions, one can pick
the ideal (i.e., highest sustainable without buffering) bitrate [17]. Jiang et al., use a dataset of
9.9 million TCP throughput measurements taken from 6204 clients collected as part of the FCC’s
Measuring Broadband America platform [1], and build a Decision Tree model to capture the re-
lation between throughput and session attributes (e.g., AS, connection medium, timestamp, etc)
associated with each TCP flow. The result (Table 1) suggests that the ideal bitrate chosen based on
throughput prediction can be 3× higher than static bitrate and there are fewer sessions where the
chosen bitrate exceeds the throughput.

This shows how data of different network layers enable accurate throughput prediction, which
leads to better bitrate selection than using information of single video session.

2.3 Better init cwnd by offline measurement
Setting a proper initial sending rate (init cwnd) before a TCP session starts is inherently hard
from the perspective of a single endpoint and thus init cwnd has long been conservatively set
to one packet. In turn, this makes many small files suffer from long completion time as they
are RTT-bound. Realizing this, a proposal from Google made an empirical argument to increase
init cwnd to 10 packets based on large-scale measurements over a wide range of applica-
tions [6]. This work observed that average latency of HTTP responses improved by approximately
10% with the largest benefits being demonstrated in high RTT and high bandwidth-delay product
(BDP) networks.

2.4 Rethinking TCP design
Today’s TCP control logics use “magic” constants handed down from generations that are manually
configured (e.g., the multiple and increment of AIMD). However, the optimal values of these
constant should be a function of the network context (e.g., data center, satellite network, etc) in
which TCP operates, implying significant room of improvement through setting optimal values
on these constants. Prior work on Remy [26] showed that a machine designed TCP that uses
offline simulation driven by prior knowledge of the network context (e.g., topology, degree of
multiplexing) can learn the best values of some key constants and achieve significant performance
improvement over today’s manually picked values; e.g., a simulated 15 Mbps fixed-rate link with
eight senders contending and an RTT of 150 ms, Remy control logic achieves 40+% throughput
speed up and 20+% delay reduction over many specially engineered TCP variants.

Finally, we show an example of how TCP can be simplified by driving the control decisions

3

Framework for DDN

DToday = F(DataLocal ,ConfigManual)

DDDN = FActuator (Model(DataMore),DataLocal ,ConfigDDN)

Actuator

Modeling
engine

Sensor

Sensor

...

Local data

Framework for today’s control logic

Figure 2: Framework for DDN.

directly by data on performance measurements. Today’s TCP congestion control relies on various
packet-level network events as signal of network conditions. To this end, TCP uses some logic
to map predefined packet-level events to control responses on sending rate (cwnd) based on in-
direct inference on certain network conditions, which is often not accurate. In contrast, PCC [5]
attempts to simplified TCP congestion control algorithm by using locally observed performance to
directly drive the setting of cwnd. Specifically, it continously maintains a model between observed
performance (e.g., throughput and latency) and cwnd. This approach greatly simplifies TCP con-
gestion control, while at the same time, significantly improves TCP performanc; e.g., 10× higher
throughput of TCP CUBIC on global commercial Internet.

While Remy and PCC’s designs were developed in closed world simulations, we argue that it
is not a significant leap of faith to imagine this design process could have itself been a data-driven
step run “in the wild” on real sessions.

3 Framework of DDN
In this section, we present an attempt to formalize the DDN paradigm and discuss a simple tax-
onomy of DDN instantiations based on when and how DDN can be used. We believe that having
such a systematic framework will in turn highlight new opportunities for further unleashing the
benefits DDN and also act as an anchor to highlight the key technical challenges in realizing the
potential of DDN (§4).

3.1 What is DDN?
Definition of DDN: In a nutshell, DDN optimizes the performance of a single flow by leveraging
all data available from other flows or other network elements. This is in contrast to the exist-
ing performance optimization techniques which typically use only data specific to the flow being
optimized. Figure 2 illustrates the overall framework of DDN.

The capability of harnessing more data enables DDN to make better control decisions. For
instance, C3 (§2.1) optimizes control decisions of CDN and bitrate selection by taking quality
measurements from many clients, rather than one client, as input data to the control logic. In

4

addition, DDN enables data-driven setting on the configuration. For instance, init cwnd (§2.3)
is increased from one to ten packets not based on manual selection, but by empirical measurements
of performance under different values of init cwnd.
Workflow of DDN: The “control formula” of DDN in Figure 2 naturally suggests three logical
modules in DDN:
• Sensor: First, DDN uses sensors to gather input data from different sources. For instance, the

sensing layer of C3 measures quality on client-side players via instrumentation [3].
• Modeling engine: Second, DDN uses a modeling engine to identify spatial and/or temporal

correlations among input data (collected by sensors), and build a aggregated model, which
informs control decisions. For instance, C3 builds a prediction model of video quality based
on real-time quality measurements of millions of clients.
• Actuator: Finally, DDN uses actuators to make control decisions for individual flows based

on aggregated model produced by the modeling engine. For instance, actuators of C3 make
control decisions w.r.t CDN/bitrate selection based on the quality prediction model and the
local information of a specific video client.
This high-level view can now help us envision a broad design space of DDN instantiations; e.g.,

depending on the type of data, spatiotemporal granularity of data, and how/when the data-driven
models are used as part of the actuation logic.

3.2 What is input data of DDN?
We classify the “sensor” data for a DDN instantiation along two axes: type (e.g., source of the
data) and granularity.
Type: Input data can be collected from different devices, different protocols, and even different
layers. For instance, to optimize control decisions of video streaming, one could leverage perfor-
mance measurements of other video sessions on other devices (e.g., §2.1), cross protocols (i.e.,
web sessions), and cross-layer (e.g., bitrate selection based on TCP measurements in §2.2).

Besides performance information, there are other types of input data that can inform DDN
to make optimal control decisions. For instance, path or link-level information from ISPs [15]
or other sources (e.g., [20]) allows DDN to accurately identify similar TCP flows that traverse the
same bottleneck link. Moreover, accurate simulation on network state transition (§2.4) also provide
insights on how control logics perform in a certain setup.
Granularity: Input data may also differ in spatial and temporal granularity. It can be “local”
(e.g., PCC §2.4), “global” (e.g., C3 §2.1), or somewhere in between (e.g., a small collection of
hosts [25]). Furthermore, it can be real-time (within seconds), near real-time (with delay of minutes
to inform control decisions with more persistence) or offline (e.g, §2.3).

3.3 How does DDN improve a protocol?
Next, we focus on possible instantiations of DDN-inspired novel actuation mechanisms. We clas-
sify them along two axes: how and when DDN performs the “actuation” step.
“How”–Decisions or configurations: DDN can be integrated in a protocol in different ways. The
clean-slate (and radical) approach is that DDN uses input data to directly drive control decisions.

5

However, this requires a wholesale refactoring over today’s control logic (which is not designed
to use more input data), and is thus not ideal for wide deployment, especially for applications that
offer limited interfaces (e.g., video streaming protocols are mostly proprietary). Alternatively, one
may use data to drive the selection of configuration parameters (e.g., init cwnd) or control logic
based on the network context.
“When”–Online or offline: Both control logics and configuration of control logics can happen
either online or offline. Ideally, one may want to continously tune control decisions to capture
dynamics of network conditions and traffic pattern. Nevertheless, some control decisions are in-
feasible to be changed in real time and therefore are better to be set offline. For instance, the list
of bitrate levels in which a video is encoded is critical to video quality. But they cannot be easily
reconfigured as it requires re-encoding videos and disseminating them to CDN edge servers.

3.4 What is the application of DDN paradigm?
At a high level, DDN paradigm should be applicable to any network protocols whose performance
depends on control decisions. In particular, DDN has larger potentials when optimal decisions
depend on locally invisible elements, for which DDN offers more visibility with more input data.
This applies to most endpoint protocols which continously make control decisions to cope with
the varying network conditions. DDN also benefits protocols of internal network elements (e.g.,
routing) to make better control decisions in response to dynamic traffic patterns. In particular, we
present some concrete usecases of DDN by extending existing point instantiations and shedding
light on new applications.
Unexplored opportunities for TCP: Based on the framework of DDN, we identify two unex-
plored opportunities for TCP. First, rather than picking a one-size-fits-all init cwnd based on
empirical measurements (§2.3), it can be extended in DDN framework to dynamically customize
init cwnd for different TCP flows based on real-time data. Given the considerable spatial and
temporal variability of bottleneck bandwidth, it would unleash significant improvement by dynam-
ically use the largest init cwnd that would have no loss. Second, rather than building a model
between cwnd and performance with local information (§2.4), it can be extended in DDN frame-
work to combine the observed performance from multiple TCP flows and thus identify the optimal
cwnd more efficiently.
Skype: To ensure high quality (e.g., low loss rate, latency and jitter), Skype tunes “control knobs”,
such as the relay paths (i.e., supernodes that connect two clients) in order to avoid links with con-
gestion or high loss. Today, such selection is largely agnostic to real-time network conditions. With
access to multiple flows, it is feasible to infer current network conditions and make better decisions
based on quality of concurrent and historical sessions. For instance, if Skype calls between two IP
prefixes show better performance on one relay path than those on another path, the latter relay path
is likely to be congested, and we should re-route the traffic to avoid the congestion. Alternatively,
knowing the congestion can inform the decision to place an additional supernode, if the congestion
cannot be circumvented via network routing. All these would be infeasible without the visibility
of many application sessions.
Routing: Today’s BGP prefers shorter AS-paths as an indirect way to improve end-to-end per-
formance. However, the shortest AS-level path is not necessarily the path that offers the best

6

end-to-end performance [24]; e.g., traversing a large AS that have many hops for intra-domain
routing will be slower and more likely to be congested than going through multiple small ASes.
DDN can alleviate this problem by selecting path based on real-time measurements of end-to-end
performance. They can be measured by edge ASes or sharing information across ISPs and end-
points (similar to EONA [15]). Similarly, we see a natural synergy between DDN and emerging
network management paradigms such as SDN [21] and SDX [8] that use a logically centralized
network-wide view. To date, however, SDN deployments still use traditional decision (e.g., traffic
engineering algorithms [14, 11]). We believe that going forward SDN too can benefit by making
the control logic DDN-like.

4 Challenges
The unified DDN framework allows us to elaborate common challenges faced by applying DDN
on any protocol. Furthermore, it sheds light on opportunities, general-purpose design guidelines
and even reusable solutions to address the challenges. In essence, the key challenges of DDN lie
in where and how the three modules of DDN– sensors, modeling engine and actuators (Figure 2) –
should be implemented.

4.1 Sensors: Scalable sharing platform
The first challenge concerns where and how sensors share measured data efficiently. The nature
of networks means sensors must be implemented in a distributed manner. Once data are measured
(which in itself is a challenge yet beyond the scope of this paper), it is challenging to share them
efficiently to inform the decisions of as many flows as possible, especially in wide-area networks.
Hence, a practical solution must strike a balance between more visibility and more freshness of
data. On one hand, decentralized sharing mechanism may provide fresh information, but it is
not scalable to propagate it among many endpoints (i.e., less visibility). On the other hand, a
centralized entity can collect data of a global view, but it is hard to get real-time information given
the inevitable latency to endpoints.
Opportunity: Tradeoff between global visibility and fresh information. Many control deci-
sions can trade global visibility for information freshness or vise versa because they do not require
global visibility and freshest information at the same time. The underlying rationale is that there
is lower dynamics (hence more tolerance on stale data) on a global scale than on a local scale. For
instance, it has been shown [7] that, although finding the best CDN requires a global view (video
sessions using different CDNs), the best CDNs can be inferred from slightly stale data (e.g., with
several minutes delay) and cached because they tend to persist on a timescale of minutes. In con-
trast, control decisions that require real-time data often do not need data from global scope. For
instance, video bitrate adaptation, under sudden changes of bandwidth, needs real-time throughput
measurements, but history throughput of a single flow is usually sufficient.
Design guideline: Two-tier design. Given the tradeoff between global visibility and fresh infor-
mation, a practical design for DDN sensor would be to collect data in different timescales: data that
require more global visibility but lower freshness can be collected by a centralized entity which

7

operates on a coarse-grained timescale (e.g., of minutes), while data that require more freshness but
less visibility can be collected by decentralized entities which operate on a fine-grained timescale
(e.g., milliseconds or seconds) and closer to the network elements being optimized.

4.2 Modeling engine: Effective aggregation of data
The second challenge regards how DDN modeling engine performs effective analytics and spa-
tial/temporal aggregation over data from different sources. This is challenging for a number of
reasons. First, it must take into account the inherent “noise” embedded in the data. For instance,
video quality measurements on different CDN can be biased by unbalanced distribution of pop-
ulation (e.g., most video sessions use certain CDN due to policy) or hidden factors (e.g., CDN
selection is based on unknown contract between ISPs and CDNs). The negative impact of unbal-
anced data is a common caveat when applying statistics techniques [4]. Second, the data may have
complex and dynamic underlying structures. For instance, TCP flows could be bottlenecked by
different links, which vary spatially and temporally. Such structures must be accurately identified,
or the control decisions will be made with irrelevant information and become random or worse
off. Third, because control decisions are often needed immediately based on fresh information, the
modeling engine must be scalable to run (potentially complex) analytics very quickly.
Opportunity: Critical and persistent correlation3 between flows. Though correlations among
data could be complex and dynamic, it has been shown that key factors that impact performance are
persistent and identifiable. For instance, measurement study on video quality issues [16] has shown
that poor quality can be attributed to one or two key attributes (e.g., CDN or content availability),
and the impact of these attributes tends to persist for a long time, which implies that DDN can
learn such key correlations based on history data.
Design guideline: domain-specific learning of correlations To learn the correlation from data,
we can borrow a rich literature in statistics and machine learning on learning data correlation by
applying domain-specific insights; e.g., each flow can be viewed as a data point associated with
domain-specific features that could potentially impact the performance (e.g., initial bitrate selection
in §2.2).

4.3 Placing actuators: Minimal changes to today’s protocols
The third challenge concerns where actuators should be implemented in order to minimize changes
to existing protocols. A clean-slate DDN approach would replace today’s control logic by an
actuator that can utilize more data. This, however, may require a wholesale change on control
logics of today’s protocols, and there is a number of reasons to keep minimal changes on existing
protocols. First, minimal changes preserve desirable properties of today’s implementations (e.g.,
packet conservation of TCP [13]) and maximize compatibility with legacy implementations (e.g.,
TCP friendliness). Second, many application-level protocols are proprietary and offer limited
interfaces (e.g., Standard video DASH protocols only allow third-party change on CDN and bitrate
at the beginning of a session), so holistic changes may not be realistic or have wide deployment.

3Correlation is used to refer to both flows that have similar performance and the correlation between the flow
attributes and its performance, which is an indirect indicator of correlation among flows

8

Opportunity: Exploring configuration parameters Previous research has shown a significant
impact of configuration on performance, even the control logic remains unchanged. For instance,
Remy (§2.4) parameterizes TCP and achieves remarkable performance improvement by only set-
ting the configuration parameters.
Design guideline: Setting key constants dynamically. DDN can still achieve better performance
with minimal changes by optimally setting key configurations in today’s control logics. This avoids
a wholesale change on the control logics.

4.4 Logic of actuators: Stable and optimal decision making
The last challenge concerns how actuators make control decisions. In reality, it is possible that
DDN needs to collect information from the same endpoints that the actuator makes decision for
(e.g., C3). However, this could create oscillation in the control loop and suboptimal control de-
cisions. For instance, if many video clients switch to the most uncongested CDN simultaneously,
it can create congestion on one CDN and cause the video clients to switch again. Even if a CDN
is not congested by moving all clients to it, moving all clients to the same decision reduces the
visibility to different decisions and may stuck in local optimal decision.
Opportunity: Access to many flows. To strike a balance between stability and optimality, DDN
could leverage the control over many flows and direct flows over multiple choices. In general, the
capability to explore multiple choices simultaneously can lead to more stable and efficient control
(e.g., [10]). For instance, in order to find the best inter-domain AS-PATH, one should use a small
fraction of traffic to explore the paths other than the optimal one [24], which offers visibility on
other paths in case performance of current path degrades.
Design guideline: Tools of machine learning and control theory. In essence, this challenge
can be framed as exploration-exploitation problem, which is a rich research topic in it own right
(e.g., active learning and multi-bandit [18] problems). Yet, conventional techniques assume that
the “ground truth” of each decision is independent to the decisions, which often does not hold
for network protocols; e.g., CDN’s performance does change under different loads [19]. So DDN
actuators should also apply adaptive control to stabilize the control (e.g., [22]).

5 Case Study: DDN-TCP
This section instantiates the framework (§3), challenges and potential solutions (§4) of DDN in a
specific application of TCP, called DDN-TCP. We present the design of sensor, modeling engine
and actuator, and discuss open challenges.

5.1 DDN-TCP Sensors
Previous research has shown that TCP can benefit from data from different sources. Ideally, fine-
grained network feedback, such as ECN [23], helps TCP make more informed decisions. In addi-
tion, sharing congestion states maintained by different flows can also lead to significant improve-
ment [25]. Besides congestion states and packet-level eventsi, performance measurements (e.g.,
throughput or latency) of different cwnd also help TCP congestion control to find the optimal

9

cwnd [5]. Even offline simulation [26] driven by network statistics can be used as input data to
inform better congestion control logics. In the following discussion, we assume that sensors collect
performance measurements of many TCP flows from different endpoints (a design point that has
not been discussed).

There are two open questions regarding sensors of DDN-TCP. First, in order to collect or share
the data, we need standard formats that specify low-level details such as measurement method-
ology, units and precision, and so forth. We believe that some standard body (e.g., IETF) will
precisely define these semantics. Second, because sharing data consumes precious bandwidth,
DDN-TCP needs lightweight sharing mechanisms that have little bandwidth overhead and can
work over unreliable connections.

5.2 DDN-TCP Modeling engine
After receiving performance measurements from sensors, the modeling engine identifies correla-
tions between TCP flows. DDN-TCP learns the correlation among flows by a back-end cluster,
which has the resource to run complex inference techniques (e.g., SVM) (§4.3). Though using a
centralized modeling engine would add inherent delay to the identified flow correlation, this is tol-
erable due to the persistence of such correlation (§4.1); e.g., bottleneck links shared by correlated
flows tend to have a long persistence [12].

There are two open questions regarding the modeling engine of DDN-TCP. First, aggregating
data by a centralized cluster may cause privacy issues or who should run/own the platform of DDN-
TCP. Second, TCP performance can be impact by some factors that are invisible to the modeling
engine. To avoid such negative impact, the modeling engine should isolate the TCP flows whose
performance does not show strong correlation with any available information.

5.3 DDN-TCP Actuators
Finally, for the purpose of minimimal changes to the existing protocols (§4.3) and fault tolerant,
each endpoint should still run today’s congestion control. DDN-TCP actuators should be operated
by separate machines, and set the key configuration (e.g., init cwnd) of local TCP and send
congestion control decision of cwnd when the actuator decides to change it. Because actuators
need to be responsive to packet losses, latency between actuators and endpoints must be lower
than RTT of the TCP flow being optimized. Therefore, unlike the modeling engine, DDN-TCP
uses geographically distributed front-end actuators to minimize latency to different endpoints. We
design the workflow of DDN-TCP as an extenion of PCC (§2.4). The modeling engine identifies
correlated flows (i.e., those sharing the same bottleneck), and each front-end actuator compares
the performance of different cwnd over these correlated flows simultaneously. This could yield
similar benefits as PCC and have more efficient convergence to optimal cwnd.

Figure 3 shows some early results of DDN-TCP about how much flow completion time can
be reduced by setting init cwnd dynamically rather than statically. We simulated a bottleneck
link (bandwidth b, queue length of q and delay d) shared by n competing flows, each sending file
of size f . The figure shows the distribution of reduction of flow completion time compared with
using static init cwnd of 1 or 10 packets. The distribution is over all combinations of b =

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F
Reduction in completion time (%)

init_cwnd=1
init_cwnd=10

Figure 3: Early results of DDN-TCP

{1, 10, 100}Mbps, q = {10, 100, 1K, 10K}pkts, d = {1, 10, 100, 1000}ms, n = {1, 2, 4, 8, 16},
f = {1.5, 6, 24, 96, 384}Mb. It shows a median reduction of 20% or 50% compared to static
init cwnd, and up to 97% reduction when q is small (where init cwnd =10 is too aggressive
and causes severe packet loss).

There are two open questions regarding actuators of DDN-TCP. First, actuators must have fast
reaction to keep packet conservation [13] and avoid congestion collapse, but the delay between
endpoints and front-end actuators could cause slow reaction to network congestion. Second, in
a high-level, DDN-TCP actuator need to be “fair” to other flows, though the definition of such
fairness is beyond the scope of this paper.

References
[1] 2014 measuring broadband america report technical appendix. http://

data.fcc.gov/download/measuring-broadband-america/2014/
Technical-Appendix-fixed-2014.pdf.

[2] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang, Michael J
Franklin, Ali Ghodsi, and Michael I Jordan. The missing piece in complex analytics: Low
latency, scalable model management and serving with velox. 2015.

[3] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Antony Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user engagement.
In Proc. SIGCOMM, 2011.

[4] Pedro Domingos. A few useful things to know about machine learning. Communications of
the ACM, 55(10):78–87, 2012.

[5] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira. Pcc: Re-
architecting congestion control for consistent high performance. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 395–408, Oakland, CA,
2015. USENIX Association.

11

http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf

[6] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal,
Arvind Jain, and Natalia Sutin. An argument for increasing tcp’s initial congestion window.
Computer Communication Review, 40(3):26–33, 2010.

[7] Aditya Ganjam, Faisal Siddiqi, Jibin Zhan, Ion Stoica, Junchen Jiang, Vyas Sekar, and Hui
Zhang. C3: Internet-scale control plane for video quality optimization. In To appear in NSDI.
USENIX, 2015.

[8] Arpit Gupta, Muhammad Shahbaz, Laurent Vanbever, Hyojoon Kim, Russ Clark, Nick Feam-
ster, Jennifer Rexford, and Scott Shenker. Sdx: A software defined internet exchange. 2014.

[9] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data.
Intelligent Systems, IEEE, 24(2):8–12, 2009.

[10] Eshcar Hillel, Zohar S Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. In Advances in Neural Information Processing Systems,
pages 854–862, 2013.

[11] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven wan. In ACM SIG-
COMM 2013.

[12] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang. A measurement
study of internet bottlenecks. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE, volume 3, pages 1689–1700.
IEEE, 2005.

[13] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer Communi-
cation Review, volume 18, pages 314–329. ACM, 1988.

[14] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experience with a
globally-deployed software defined wan. In ACM SIGCOMM 2013.

[15] Junchen Jiang, Xi Liu, Vyas Sekar, Ion Stoica, and Hui Zhang. Eona: Experience-oriented
network architecture. In ACM HotNets, 2014.

[16] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Shedding light on the structure of
internet video quality problems in the wild. In CoNEXT. ACM, 2013.

[17] Junchen Jiang, Vyas Sekar, and Yi Sun. Dda: Cross-session throughput prediction with
applications to video bitrate selection. arXiv preprint arXiv:1505.02056, 2015.

[18] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028, 2014.

12

[19] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang.
A case for a coordinated internet video control plane. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and protocols for computer
communication, pages 359–370. ACM, 2012.

[20] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani. iplane: An information plane for distributed ser-
vices. In USENIX OSDI ’06.

[21] Nick McKeown. Software-defined networking. INFOCOM keynote talk, 17(2):30–32, 2009.

[22] Andrew Y Ng and H Jin Kim. Stable adaptive control with online learning. In NIPS, 2004.

[23] Kadangode Ramakrishnan and Sally Floyd. A proposal to add explicit congestion notification
(ecn) to ip. Technical report, RFC 2481, January, 1999.

[24] Michael Schapira, Yaping Zhu, and Jennifer Rexford. Putting bgp on the right path: A case
for next-hop routing. In ACM HotNets ’10.

[25] Srinivasan Seshan, Mark Stemm, and Randy H Katz. Spand: Shared passive network per-
formance discovery. In USENIX Symposium on Internet Technologies and Systems, pages
135–146, 1997.

[26] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated congestion
control. In ACM SIGCOMM Computer Communication Review, volume 43, pages 123–134.
ACM, 2013.

13

	1 Introduction
	2 Illustrative Examples
	2.1 Better CDN selection for video
	2.2 Bitrate selection using TCP measurements
	2.3 Better init_cwnd by offline measurement
	2.4 Rethinking TCP design

	3 Framework of DDN
	3.1 What is DDN?
	3.2 What is input data of DDN?
	3.3 How does DDN improve a protocol?
	3.4 What is the application of DDN paradigm?

	4 Challenges
	4.1 Sensors: Scalable sharing platform
	4.2 Modeling engine: Effective aggregation of data
	4.3 Placing actuators: Minimal changes to today's protocols
	4.4 Logic of actuators: Stable and optimal decision making

	5 Case Study: DDN-TCP
	5.1 DDN-TCP Sensors
	5.2 DDN-TCP Modeling engine
	5.3 DDN-TCP Actuators

