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Abstract

In this paper, we present reasoning techniques for a component-based modeling and verification
approach for hybrid systems comprising discrete dynamics as well as continuous dynamics, in
which the components have local responsibilities. Our approach supports component contracts
(i. e., input assumptions and output guarantees of interfaces) that are more general than previ-
ous component-based hybrid systems verification techniques in the following ways: We introduce
change contracts, which characterize the magnitude of change to describe how current values
exchanged between components along ports relate to previous values. We also introduce delay
contracts, which characterize the rate of change to describe how change is related to the duration
between value exchanges. Together, these contracts can take into account what has changed be-
tween two components in a given amount of time since the last exchange of information. Most
crucially, we prove that the safety of compatible components implies safety of the composed sys-
tem. The proof steps of the theorem are also implemented as a tactic in KeYmaera X, allowing
automatic generation of a KeYmaera X proof for the composite system from proofs of the concrete
components.





1 Introduction
Cyber-physical systems (CPS) feature discrete dynamics (e. g., autopilots in airplanes, controllers
in self-driving cars) as well as continuous dynamics (e. g., motion of airplanes or cars) and are
increasingly used in safety-critical areas. Models of such CPS (i. e., hybrid system models, e. g.,
hybrid automata [8], hybrid programs [22]) are used to capture properties of these CPS as a basis
to analyze their behavior and ensure safe operation with formal verification methods. However,
as the complexity of these systems increases, monolithic models and analysis techniques become
unnecessarily challenging.

Since complex systems are typically composed of multiple subsystems and interact with other
systems in their environment, it stands to reason to apply component-based modeling and split
the analysis into isolated questions about subsystems and their interaction. However, approaches
supporting component-based verification of hybrid system models are rare and differ strongly in
the supported class of problems (cf. Section 5). Component-based techniques for hybrid (I/O)
automata are based on assume-guarantee reasoning (AGR) [3, 6, 9] and focus on reachability
analysis. Complementarily, hybrid systems theorem proving provides proofs, which are naturally
compositional [21] (improves modularity) and support nonlinear dynamics, but so far limit com-
ponents [15, 16] to contracts over constant ranges (e. g., speed of a robot is non-negative and at
most 10). Such contracts require substantial static independence of components, which does not
fit to dynamic interactions frequently found in CPS. For example, one might show that a robot in
the kitchen will not collide with obstacles in the physically separated back yard, but nothing can
be said about what happens when both occupy the same parts of the space at different times to be
safe. We, thus, extend CPS contracts [15, 16] to consider change of values and timing.

In this paper, we introduce a component-based modeling and verification approach, which
improves over previous approaches in the following critical ways. We introduce change contracts
to specify the magnitude of change of a variable between two states (e. g., current speed is at
most twice the previous speed). We further add delay contracts to capture the rate of change
between the states (e. g., current speed is at most previous speed increased by accelerating for
some time ε). Together, change and delay contracts make the hybrid (continuous-time) behavior
of a component available as a discrete-time measurement abstraction in other components. That
way, the joint hybrid behavior of a system of components simplifies to analyzing each component
separately for safety and for satisfying its contracts, together with checks of compatibility and local
side conditions. The isolated hybrid behavior of a component in question is, thus, analyzed with
respect to simpler discrete-time abstractions of all other components in the system. We prove that
this makes safety proofs about components transfer to the joint hybrid behavior of the composed
system built from these compatible components. Moreover, we automate constructing the safety
proof of the joint hybrid behavior from component proofs with a proof tactic in KeYmaera X [7].
This enables a small-core implementation [4] of the theory we develop here.
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2 Preliminaries: Differential Dynamic Logic
For specifying and verifying correctness statements about hybrid systems, we use differential dy-
namic logic (dL) [21, 24], which supports hybrid programs as a program notation for hybrid sys-
tems, according to the following EBNF grammar:

α ::= α; β | α ∪ β | α∗ | x := θ | x := ∗ | (x′1 = θ1, . . . , x
′
n = θn & H) | ?H

For details on the formal semantics of hybrid programs see [21, 24]. The sequential composition
α; β expresses that β starts after α finishes. The non-deterministic choice α∪β follows either α or
β. The non-deterministic repetition operator α∗ repeats α zero or more times. Discrete assignment
x := θ instantaneously assigns the value of the term θ to the variable x, while x := ∗ assigns
an arbitrary value to x. The ODE (x′ = θ & H) describes a continuous evolution of x (x′ denotes
derivation with respect to time) within the evolution domainH . The test ?H checks that a condition
expressed by property H holds, and aborts if it does not. A typical pattern x := ∗; ?a ≤ x ≤ b,
which involves assignment and tests, is to limit the assignment of arbitrary values to known bounds.
Other control flow statements can be expressed with these primitives [19]. For example, in this
paper, we represent a no-operation statement skip ≡?true as a test that always holds.

To specify safety properties about hybrid programs, dL provides modal operator [α]. When φ
is a dL formula describing a state and α is a hybrid program, then the dL formula [α]φ expresses
that all states reachable by α satisfy φ. The set of dL formulas relevant in this paper is generated by
the following EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expressions
in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ

Proof for properties containing non-deterministic repetitions often use invariants, representing
a property that holds before and after each repetition. Even though there is no unified approach
for invariant generation, if a safety property including a non-deterministic repetition is valid, an
invariant exists.

We use V to denote a set of variables. FV (.) is used as an operator on terms, formulas and
hybrid programs returning the free variables, whereas BV (.) is an operator returning the bound
variables.1 Similarly, V (.) = FV (.)∪BV (.) returns all variables occurring in terms, formulas and
hybrid programs. We use dL in definitions and formulas to denote the set of all dL formulas. We
use “7→” to define functions. f = (a 7→ b) means that the (partial) function f maps argument a to
result b and is solely defined for a.

3 Hybrid Components with Change and Delay Contracts
In this section, we extend components (defined as hybrid programs) and their interfaces [16] with
time and delay concepts. Interfaces identify assumptions about component inputs and guarantees

1Bound variables of a hybrid program are all those that may potentially be written to, while free variables are all
those that may potentially be read [24].
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about component outputs. We define what it means for a component to comply with its contract
by a dL formula expressing safe behavior and compliance with its interface. And we define the
compatibility of component connections rigorously as dL formulas as well. The main result of this
paper is a proof showing that the safety properties of components transfer to a composed system,
given proofs of contract compliance, compatibility and satisfaction of local side conditions. Users
only provide a specification of components, interfaces, and how the components are connected,
and show proof obligations about component contract compliance, compatibility and local side
conditions; system safety follows automatically.

3.1 Running Example: Tele-Operated Robot with Collision Avoidance

movemove

obstacle position:  𝑝𝑜 ↦ Ƹ𝑝𝑜

avoid 
crash

Remote Control

ctrl𝑟𝑐 ≡ 𝑑 ≔∗; ? 𝑑 − 𝑑− ≤ D

plant𝑟𝑐 ≡ 𝑠𝑘𝑖𝑝

cp𝑟𝑐 ≡ 𝑠𝑘𝑖𝑝

Robot

ctrl𝑟 ≡ ? Safe; 𝑠𝑟 ≔ መ𝑑 ∪ ?¬Safe; 𝑠𝑟 ≔ 0
plant𝑟 ≡ 𝑝𝑟

′ = 𝑠𝑟 & 𝑡 − 𝑡− ≤ 𝜀

cp𝑟 ≡ 𝑠𝑘𝑖𝑝

Obstacle
ctrl𝑜 ≡ 𝑠𝑜 ≔∗; ? 0 ≤ 𝑠𝑜 ≤ 𝑆

plant𝑜 ≡ 𝑝𝑜
′ = 𝑠𝑜

cp𝑜 ≡ 𝑠𝑘𝑖𝑝

𝜓𝑠𝑦𝑠 ≡ 𝑠𝑟 > 0 → 𝑝𝑜 ≠ 𝑝𝑟

Figure 1: Running Example: Robot receives speed advice and obstacle position, and has to avoid
crashes.

To illustrate the concepts, we use a running example of a tele-operated robot with collision
avoidance inspired by [10, 13], see Fig. 1. The system consists of three components, cf. Fig. 1:

1. The remote control component periodically issues a new speed advisory d on its output port.

2. The obstacle component moves with arbitrary speed so limited to at most S and provides
its current position on its single output port po. Obstacles include both stationary elements
(e. g., a wall) or a moving entities (e. g., a person).

3. The robot component reads speed advice on input port d̂ and follows the speed advice, if the
obstacle position measured on input port p̂o is at a safe distance.
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Two consecutive speed advisories from the RC should be at most D apart (i. e., |d− d−| ≤ D).
The RC issues speed advice to the robot, but has no physical part. The obstacle chooses a new non-
negative speed but at most S and moves according to its plant. The robot measures the obstacle’s
position. If the distance is safe, the robot chooses the speed suggested by the RC; otherwise, the
robot stops.

The overall system target is to keep the robot from actively colliding with the obstacle, i. e.,
the robot’s and the obstacle’s position must not coincide when the robot is driving. Formally,
this property can be written as ψsafe

sys ≡ sr > 0 → po 6= pr. Formal definitions of these three
components, their interfaces, and the respective contracts, will be introduced step-by-step along
the definitions in subsequent sections.

3.2 Specification: Components and Interfaces
Change components and interfaces specify what a component assumes about the magnitude of
change at each of its inputs, and what it guarantees about the magnitude of change on its outputs.
To make such conditions expressible, every component will use additional variables to store both
the current and the previous value communicated along a port. These so-called ∆-ports can be
used to model jumps in discrete control, and for measurement of physical behavior if the rate of
change is irrelevant.

3.2.1 Components

Components may consist of a discrete control part and a continuous plant, cf. Def. 1. How-
ever, Def. 1 does not prescribe how control and plant are composed; the composition to a hybrid
program is specified later in Def. 5. We allow components to be hierarchically composed from
sub-components, so components list the internally connected ports of sub-components.

Definition 1 (Component). A component C = (ctrl, plant, cp) is defined as
• ctrl is the discrete part without differential equations,
• plant is a differential equation (x′1 = θ1, . . . , x

′
n = θn&H) for n ∈ N,

• cp are deterministic assignments connecting ports of sub-components, and
• V (Ci)

def
= V (ctrl) ∪ V (plant) ∪ V (cp), correspondingly for BV (Ci) .

If a component is atomic, i. e., not composed from sub-components, the port connections cp
are empty (skip statement of no effect). The variables of a component are the variables of its
controller, plant, and all its sub-components. We aim at components that can be analyzed in isola-
tion and that communicate solely through ports. Global shared constants (read-only and thus not
used for communication purposes) are included for convenience to share common knowledge for
all components in a single place.

Definition 2 (Variable Restrictions). A system of components C1, ...,Cn is well-defined if
• global variables V global are read-only and shared by all components: V global ∩BV (Ci) = ∅,
• ∀i 6= j . V (Ci) ∩ V (Cj) ⊆ V global such that no variable of other components can be read or

written.

4



3.2.2 Example: Components

Consider the robot collision avoidance system. Its global variables are the maximum obstacle
speed S and the maximum difference D between two speed advisories, i. e., V global = {S,D}.
They can neither be bound in control nor plant of any component, cf. Def. 2.

Example 1 describes the RC component (2). Its controller Crc picks a new speed advisory and
ensures that it is not too far from the previous speed advice. Since the RC is an atomic component
without any physical characteristics, plant and cp remain empty, cf. (3)-(4).

Example 1 RC Component

Crc = (ctrlrc, plantrc, cprc) (1)

ctrlrc ≡ d := ∗; ?
∣∣d− d−∣∣ ≤ D; (2)

plantrc ≡ skip (3)
cprc ≡ skip (4)

The obstacle component Co (cf. Example 2) moves with an arbitrary but limited speed. Thus,
the obstacle controller chooses a new non-negative speed so limited by the maximum speed S,
cf. (6). The obstacle plant adapts the obstacle position according to the chosen speed (i. e., the
obstacle moves), cf. (7). The internally connected ports cpo are empty, since the obstacle is an
atomic component, cf. (8).

Example 2 Obstacle Component

Co = (ctrlo, planto, cpo) (5)

ctrlo ≡ so := ∗; ?
(
0 ≤ so ≤ S

)
; (6)

planto ≡ p′o = so (7)
cpo ≡ skip (8)

The robot component Cr (cf. Example 3) should follow speed advice from the RC and measures
the position of the obstacle to avoid collisions.

For the robot, ε is the maximum time that the plant can run. This ensures that the robot’s con-
troller runs regularly. The robot controller first chooses a new speed. If the obstacle is far enough
away, i. e., the distance between obstacle and robot (i. e., p̂o − pr) is greater than the maximum
distance that the obstacle can move (i. e., d̂ · ε), plus the maximum distance the robot itself can
move (i. e., sr · ε), the robot follows the speed advice of the RC, cf. (10). Otherwise, it stops,
cf. (11). The robot’s plant (12) adapts the robot’s position according to the chosen speed (i. e.,
the robot moves). The internally connected ports cpr (13) are empty since the robot is an atomic
component.
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Example 3 Robot Component

Cr = (ctrlr, plantr, cpr) (9)

ctrlr ≡?
(
p̂o − pr >

(
d̂+ S

)
· ε
)

; sr := d̂; ∪ (10)

?
(
p̂o − pr ≤

(
d̂+ S

)
· ε
)

; sr := 0; (11)

plantr ≡ p′r = sr (12)
cpr ≡ skip (13)

𝑺 ⋅ 𝜺

𝒑𝒐

𝒅 ⋅ 𝜺

𝒑𝒓

𝒑𝒐 − 𝒑𝒓

𝒑𝒐 − 𝒑𝒓 > 𝒅 ⋅ 𝜺 + 𝑺 ⋅ 𝜺

(a) The robot is safe to move as the areas do not
overlap.

𝑺 ⋅ 𝜺

𝒑𝒐

𝒅 ⋅ 𝜺

𝒑𝒓

𝒑𝒐 − 𝒑𝒓

𝒑𝒐 − 𝒑𝒓 ≤ 𝒅 ⋅ 𝜺 + 𝑺 ⋅ 𝜺

(b) The robot stops to avoid imminent collision as
indicated by overlapping areas of motion.

Figure 2: The robot only accepts the speed suggestion if it is safe: The green circle represents
the area that the robot might reach until the next controller run (i. e., within ε time units) with the
suggested speed d. The red circle represents the area that the obstacle might reach during the same
interval ε with maximum speed S.

3.2.3 Interfaces

An interface defines how a component may interact with other components through its ports, what
assumptions the component makes about its inputs, and what guarantees it provides for its outputs,
see Def. 3.

Definition 3 (Admissible Interface). An admissible interface I∆ for a component C is a tuple
I∆ =

(
V in, πin, V out, πout, V ∆, V −, pre

)
with

• V in ⊆ V (C) and V out ⊆ V (C) are disjoint sets of input- and output variables,
• V in ∩BV (C) = ∅, i. e., input variables may not be bound in the component,
• πin : V in → dL is a function specifying exactly one formula per input variable (i. e., input

port), representing input requirements and assumptions,
• πout : V out → dL specifies output guarantees for output ports,
• ∀v ∈ V in : V (πin(v)) ⊆

(
V (C) \

(
V in ∪ V out

))
∪ {v} such that input formulas are local to

their port,
• V ∆ = V ∆+ ∪ V ∆i ⊆ V (C) is a set of ∆-port variables of unconnected public V ∆+ ⊆
V in ∪ V out, and connected private V ∆i, with V ∆i ∩

(
V in ∪ V out

)
= ∅, so V ∆+ ∩ V ∆i = ∅,
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• V − ⊆ V (C) with V − ∩ BV (C) = ∅ is a read-only set of variables storing the previous
values of ∆-ports, disjoint from other interface variables V − ∩ (V in ∪ V out ∪ V ∆) = ∅,
• pre : V ∆ → V − is a bijective function, assigning one variable to each ∆-port to store its

previous value.

The definition is accordingly for vector-valued ports that share multiple variables along a sin-
gle port, provided that each variable is part of exactly one vectorial port. This leads to multi-ports,
which transfer the values of multiple variables, but have a single joint output guarantee/input as-
sumption over the variables in the multi-port vector. Input assumptions are local to their port,
i. e., no input formula can mention other input variables (which lets us reshuffle port ordering) nor
any output variables (which prevents cyclic port definitions). Not all ports of a component need
to be connected to other components; unconnected ports simply remain input/output ports of the
resulting composite system.

3.2.4 Example: Interfaces

Considering our example, we have to define admissible interfaces for the three components, i. e.
the RC interface I∆

rc , the obstacle interface I∆
o and the robot interface I∆

r . We start with the RC
interface.

The RC controller interface in Example 4 has no input ports, so V in
rc and πin

rc are empty, cf. (15)-
(16). The single output port d provides the speed advice, which is guaranteed to be no further than
D from the previous advice, cf. (17)-(18). The output property πout

rc limits the magnitude of change
between the previous advice d− and the current advice d, so the port d is a port with initial value
d−, cf. (19)-(21).

Example 4 Remote Control Interface

I∆
rc =

(
V in

rc , π
in
rc, V

out
rc , πout

rc , V
∆

rc , V
−

rc , prerc

)
(14)

V in
rc = {} (15)

πin
rc = () (16)

V out
rc = {d} (17)

πout
rc =

(
d 7→

∣∣d− d−∣∣ ≤ D
)

(18)

V ∆
rc = {d} (19)
V −rc = {d−} (20)

prerc =
(
d 7→ d−

)
(21)

3.3 Specification: Time and Delay
In a monolithic hybrid program with a combined plant for all components, time passes syn-
chronously for all components and their ODEs evolve for the same amount of time. When split into
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separate components, the ODEs are split into separate plants too, thereby losing the connection of
evolving for identical amounts of time. From the viewpoint of a single component, other plants
reduce to discrete abstractions through input assumptions on ∆-ports. These input assumptions are
phrased in terms of worst-case behavior (e. g., from the viewpoint of the robot, the obstacle may
jump at most distance S · ε between measurements because it lost a precise model). The robot’s
ODE, however, still runs for some arbitrary time, which makes the measurements and the continu-
ous behavior of the robot drift (i. e., robot and obstacle appear to move for different durations). To
address this issue, we introduce delay as a way of ensuring that the changes are consistent with the
time that passes in a component.

To unify the timing for all components of a system, we introduce a globally synchronized time t
and a global variable t− to store the time before each run of plant. Both are special global variables,
which cannot be bound by the user, but only on designated locations specified through the contract,
cf. Def. 4.

Definition 4 (Time). Let Ci, i ∈ N be any number of components with variables according to
Def. 2. When working with delay contracts, we assume
• the global system time t changes with constant rate t′ = 1,
• t− is the initial plant time at the start of the current plant run,
• {t, t−} ∩BV (Ci) = ∅, thus clocks t, t− are not written by a component.

3.3.1 Example: Interfaces and Time

Let us continue our running example with the obstacle’s and the robot’s interfaces, which use the
introduced global time in some of their input and output properties.

The obstacle interface (cf. Example 5) has no input ports, cf. (23)-(24). The single output port
provides the current obstacle position, which is guaranteed to be in an interval of size S · (t− t−)
centered at the obstacle’s previous position, cf. (25)-(26). The output property (27) of po captures
the rate of change between the previous value p−o and the current value po by considering global
time t. The initial value of po is kept in p−o , cf. (28)-(29).

Example 5 Obstacle Interface

I∆
o =

(
V in

o , π
in
o , V

out
o , πout

o , V ∆
o , V −o , preo

)
(22)

V in
o = {} (23)

πin
o = () (24)

V out
o = {po} (25)

πout
o =

(
po 7→

∣∣po − p−o ∣∣ ≤ S ·
(
t− t−

))
(26)

V ∆
o = {po} (27)
V −o = {p−o } (28)

preo =
(
po 7→ p−o

)
(29)
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The robot interface (cf. Example 6) contains two input ports, cf. (31)-(32). On input port p̂o
it receives the obstacle’s current position, which is guaranteed to be within the area around the
obstacle’s previous position. This property describes the rate of change of the obstacle position,
instead of a fixed global region. On input port d̂ it receives a speed advice, which is guaranteed to
be close to the previous value. This property describes the magnitude of change in speed advuce.
Thus, a global contract as in [16] would not suffice here. The robot has no output ports, cf. (33)-
(34). Both input port are delta ports, cf. (35)-(37).

Example 6 Robot Interface

I∆
r =

(
V in

r , π
in
r , V

out
r , πout

r , V ∆
r , V −r , prer

)
(30)

V in
r = {p̂o, d̂} (31)

πin
r =

(
p̂o 7→

∣∣p̂o − p̂−o ∣∣ ≤ S ·
(
t− t−

)
, d̂ 7→

∣∣∣d̂− d̂−∣∣∣ ≤ D
)

(32)

V out
r = {} (33)
πout

r = () (34)

V ∆
r = {p̂o, d̂} (35)

V −r = {p̂−o , d̂−} (36)

prer =
(
p̂o 7→ p−o , d̂ 7→ d̂−

)
(37)

3.4 Proof Obligations: Change and Delay Contract
Contract compliance ties together components and interfaces by showing that a component guar-
antees the output changes that its interface specifies under the input assumptions made in the inter-
face. Contract compliance further shows a local safety property, which describes the component’s
desired safe states. For example, a safety property of a robot might require that the robot will
not drive too close to the last measured position of the obstacle. Together with the obstacle’s out-
put guarantee of not moving too far from its previous position, the local safety property implies
a system-wide safety property (e. g., robot and obstacle will not collide), since we know that a
measurement previously reflected the real position. Contract compliance can be verified using
KeYmaera X [7].

In order to make guarantees about the behavior of a composed system we use the synchro-
nized system time t to measure the duration (t− t−) between controller runs in delay contract
compliance proof obligations, cf. Def. 5.

Definition 5 (Contract Compliance). Let C be a component with its admissible interface I∆ (cf.
Def. 3). Let formula φ describe initial states of C and formula ψsafe the safe states, both over
the component variables V (C). The output guarantees Πout ≡

∧
v∈V out πout(v) extend safety to
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ψsafe ∧ Πout. Change contract compliance CC(C, I∆) of C with I∆ is defined as the dL formula:

CC(C, I∆)
def≡ φ→ [(∆; ctrl; plant; in; cp)∗]

(
ψsafe ∧ Πout)

and delay contract compliance DC(C, I∆) is defined as the dL formula:

DC(C, I∆)
def≡ t = t− ∧ φ→ [

(
∆; ctrl; t− := t; (t′ = 1, plant) ; in; cp

)∗
]
(
ψsafe ∧ Πout)

where
in

def≡
(
v := ∗; ?πin(v)

)
for all v ∈ V in ,

are (vectorial) assignments to input ports satisfying input assumptions πin(v) and ∆ are (vectorial)
assignments storing previous values of ∆-port variables:

∆
def≡ pre(v) := v for all v ∈ V ∆ .

The order of the assignments in both in and ∆ is irrelevant because the assignments are over
disjoint variables and πin(v) are local to their port, cf. Def. 3. The function pre can be used
throughout the component to read the initial value of a ∆-port. Since pre(v) ∈ V − for all v ∈ V ∆,
Def. 3 and Def. 5 require that the resulting initial variable is not bound anywhere outside ∆.

This notion of contracts crucially changes compared to [16] with respect to where ports are
read and how change is modeled: reading from input ports at the beginning of a component’s loop
body (i. e., before the controller runs) as in [16] may seem intuitive, but it would require severe
restrictions to a component’s plant in order to make inputs and plant agree on duration. Instead,
we prepare the next loop iteration at the end of the loop body (i. e., after plant), so that actual plant
duration can be considered for computing the next input values.

3.4.1 Example: Change Contract

We continue the collision avoidance system with a change contract (40) according to Def. 5 for
the RC from Fig. 1, since the output property relates the current value d to the previous value d−.
Delay is irrelevant, because the RC has no physical part (i. e., plantrc ≡ skip). The precondition
for the RC specifies the bound for the global variable D and bootstraps the output port’s previous
value d− from the current demanded speed d, cf. (38). Here, ψrc comprises only the output port
guarantees of the RC, since the RC has no additional safety property, cf. (39). Consequently, the
RC guarantees that consecutive speed advisories are at most D apart.

φrc ≡ D ≥ 0 ∧ d = d− (38)

ψrc ≡
∣∣d− d−∣∣ ≤ D (39)

The resulting change contract per Def. 5 for the RC was verified using KeYmaera X, cf. (40).
We thus know that the component is safe and complies with its interface. Compared to contracts
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with fixed ranges as in approaches [3, 16], we do not have to assume a global limit for demanded
speeds d, but consider the previous advice d− as a reference value when calculating the next speed
advice.

φrc → [(d− := d︸ ︷︷ ︸
∆rc

; d := ∗; ?
∣∣d− d−∣∣ ≤ D︸ ︷︷ ︸

ctrlrc

;skip︸ ︷︷ ︸
plantrc

;skip︸ ︷︷ ︸
inrc

;skip︸ ︷︷ ︸
cprc

)∗]
(∣∣d− d−∣∣ ≤ D

)︸ ︷︷ ︸
Πout

rc

(40)

3.4.2 Example: Delay Contract

Change in obstacle position depends on speed and on how much time passed because obstacle
positions are related by how much time passes in the ODE planto ≡ p′o = so. Hence, we follow
Def. 5 to specify the obstacle delay contract (43). The precondition for the obstacle specifies the
bound for the global variable S, bootstraps the output port’s previous value p−o from the position po
and initializes the obstacle speed to 0, cf. (41). Here, ψo comprises only the output port guarantees
of the obstacle, since our liberal notion of obstacles should not assume obstacles to cooperate for
safety, cf. (42). Such an abstraction can be found by solving the plant ODE or from differential
invariants [23].

φo ≡ S ≥ 0 ∧ po = p−o ∧ so = 0 (41)

ψo ≡
∣∣po − p−o ∣∣ ≤ S ·

(
t− t−

)
(42)

The resulting delay contract per Def. 5 for the obstacle was verified using KeYmaera X, cf.
(43).

t = t− ∧ φo → [(

∆o︷ ︸︸ ︷
p−o := po;

ctrlo︷ ︸︸ ︷
so := ∗; ?(0 ≤ so ≤ S); t− := t; {t′ = 1,

planto︷ ︸︸ ︷
p′o = so};

skip︸ ︷︷ ︸
ino

;skip︸ ︷︷ ︸
cpo

)∗]
(∣∣po − p−o ∣∣ ≤ S ·

(
t− t−

))︸ ︷︷ ︸
Πout

o

(43)

Finally, we turn to the delay contract for the robot, according to Def. 5. The precondition
specifies the bound for the global variables S and D, bootstraps the input ports’ previous values
p̂−o and d̂− from p̂o and d̂, initializes the robot’s speed to 0 and ensures a positive control cycle
time (i. e. max plant runtime ε), cf. (44). The safety property for the robot states that the robot’s
position and the obstacle’s position must never coincide, unless the robot is stopped. Since the
robot hast no output ports it suffices to verify the safety property ψsafe

r , cf. (45).

φr ≡ S ≥ 0 ∧D ≥ 0 ∧ p̂o = p̂−o ∧ d̂ = d̂− ∧ sr = 0 ∧ ε > 0 (44)
ψr ≡ sr > 0→ p̂o 6= pr (45)

11



The resulting delay contract per Def. 5 for the robot was verified using KeYmaera X, see (46).

t = t−∧φr → [(

∆r︷ ︸︸ ︷
p̂−o := p̂o; d̂

− := d̂;

ctrlr︷ ︸︸ ︷
?Safe; sr := d̂ ∪ ?¬Safe; sr := 0; t− := t;

{t′ = 1, p′r = sr︸ ︷︷ ︸
plantr

}; p̂o := ∗; ?πin
r (p̂o); d̂ := ∗; ?πin

r (d̂)︸ ︷︷ ︸
inr

;skip︸ ︷︷ ︸
cpr

)∗] (sr > 0→ p̂o 6= pr)︸ ︷︷ ︸
ψr

(46)

3.5 Proof Obligations: Compatible Parallel Composition
From components with verified contract compliance, we now compose systems in away, that pro-
vides safety guarantees about them, without redoing system proofs.

3.5.1 Parallel Composition

For this, Def. 6 introduces a quasi-parallel composition, where the discrete ctrl parts of the compo-
nents are executed sequentially in any order, while the continuous plant parts run in parallel. The
connected ports cp of all components are composed sequentially in any order, since the order of
independent deterministic assignments (i. e., assignments having disjoint free and bound variables)
is irrelevant. Such a definition is natural in dL, since time only passes during continuous evolution
in hybrid programs, while the discrete actions of a program do not consume time and thus happen
instantaneously at a single real point in time, but in a specific order. The actual execution order of
independent components in a real system is unknown, which we model with a non-deterministic
choice between all possible controller execution orders. Values can be exchanged between compo-
nents using ∆-ports; all other variables are internal to a single component, except global variables,
which can be read everywhere, but never bound, and system time t, t−, which can be read every-
where, but only bound at specific locations fixed by the delay contract, cf. Def. 5. ∆-ports store
their previous values in the composite component, regardless if connected or not. For all connected
ports, Def. 6 replaces the non-deterministic assignments to open inputs (cf. in) with a determin-
istic assignment from the connected port (cf. cp). This represents an instantaneous and lossless
interaction between components.

Definition 6 (Parallel Composition). Let Ci = (ctrli, planti, cpi) denote components with their
corresponding admissible interfaces

I∆
i =

(
V in
i , π

in
i , V

out
i , πout

i , V ∆
i , V

−
i , prei

)
for i ∈ {1, . . . , n} ,

sharing only V global and global times such that V (Ci) ∩ V (Cj) ⊆ V global ∪ {t, t−} for i 6= j. Let
further

X :
(⋃

1≤j≤n V
in
j

)
⇀
(⋃

1≤i≤n V
out
i

)
, provided X (v) /∈ V out

j , for all v ∈ V in
j

be a partial (i. e., not every input must be mapped), injective (i. e., every output is only mapped to at
most one input) function, connecting some inputs to some outputs, with domain IX = {x ∈ V in |
X (x) is defined} and image OX = {y ∈ V out | y = X (x) for some x ∈ V in}. The composition of

12



n components and their interfaces (C, I∆)
def≡
(
(C1, I∆

1 )‖. . .‖(Cn, I∆
n )
)
X according to X is defined

as:
• controllers are executed in non-deterministic order of all the n! possible permutations of
{1, . . . , n},

ctrl ≡ (ctrl1; ctrl2; . . . ; ctrln)∪ (ctrl2; ctrl1; . . . ; ctrln)

∪ . . .∪ (ctrln; . . . ; ctrl2; ctrl1)

• plants are executed in parallel, with evolution domain H ≡
∧
i∈{1,...,n}Hi

plant ≡ x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1︸ ︷︷ ︸

component C1

, . . . , x(1)′
n = θ(1)

n , . . . , x(m)′
n = θ(m)

n︸ ︷︷ ︸
component Cn

& H ,

• port assignments are extended with connections for some {vj, . . . , vr} = IX

cp
def≡ cp1; cp2; . . . ; cpn︸ ︷︷ ︸

components’ cp

; vj :=X (vj); . . . ; vr :=X (vr)︸ ︷︷ ︸
connected inputs

,

• previous values V − def
=
⋃

1≤i≤n V
−
i are merged; connected ports become private V ∆i def

=(⋃
1≤i≤n V

∆i
i

)
∪IX ∪OX ; unconnected ports remain public V ∆+ def

=
(⋃

1≤i≤n V
∆+
i

)
\ (IX ∪

OX ),
• prei are combined such that pre(v) ≡ prei(v) if v ∈ V ∆

i for all i ∈ {1, . . . , n},
• unconnected inputs V in =

(⋃
1≤i≤n V

in
i

)
\IX and unconnected outputs V out =

(⋃
1≤i≤n V

out
i

)
\

OX are merged and their requirements preserved

πin(v) ≡ πin
i (v) if v ∈ V in

i \ IX for all i ∈ {1, . . . , n}
πout(v) ≡ πout

i (v) if v ∈ V out
i \ OX for all i ∈ {1, . . . , n} .

Remark 1. The order of port assignments is irrelevant because all sets of variables are disjoint
and a port can only be either an input port or output port, cf. Def. 1 and Def. 3, and thus the
assignments share no variables. This also entails that the merged pre, πin and πout are well-defined
since V ∆

i , V in
i , respectively V out

i , are disjoint between components by Def. 2.

Remark 2. The user provides component specifications (Ci, I∆
i ) and a mapping function X , defin-

ing which output is connected to which input. The composed system of parallel components can be
derived automatically from Def. 6.

Remark 3. It follows that the set of variables of the composite component V (C) is the union of all
involved components’ variable sets V (Ci), i. e., V (C) =

⋃
1≤i≤n V (Ci). The set of global variables

V global contains all global variables in the system (i. e., in all components) and thus, its contents do
not change.

Remark 4. Since V ∆ =
⋃

1≤i≤n V
∆
i , this definition implies that internally connected ∆-ports V ∆i

of sub-components, as well as the previous values V ∆+ for all open ∆-ports are still stored. As
a result, the current and previous values of ∆-ports can still be used internally in the composite,
even when the ports are no longer exposed through the external interface of the composed system.
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3.5.2 Example: Parallel Composition

Returning to our running example of Fig. 1, after every component’s contract was verified sepa-
rately, we have to compose the components to form the overall collision avoidance system. The
mapping function connects the output ports of the RC and the obstacle with the respective input
ports of the robot, cf. (47).

X =
(
p̂o 7→ po, d̂ 7→ d

)
(47)

The component Csys in (48) and interface I∆
sys in (49) result from parallel composition of the

RC, the robot, and the obstacle, using the introduced mapping function.

Csys = ((ctrlrc; ctrlr; ctrlo ∪ ctrlo; . . .)︸ ︷︷ ︸
ctrlsys

, (plantr, planto)︸ ︷︷ ︸
plantsys

, p̂o := po; d̂ := d︸ ︷︷ ︸
cpsys

) (48)

I∆
sys =

(
{}︸︷︷︸
V in

, ()︸︷︷︸
πin

, {}︸︷︷︸
V out

, ()︸︷︷︸
πout

, {po, d, p̂o, d̂}︸ ︷︷ ︸
V ∆

, {p−o , d−, p̂−o , d̂−}︸ ︷︷ ︸
V −

,
(
po 7→ p−o , ...

)︸ ︷︷ ︸
pre

)
(49)

The robot’s input ports are connected to the RC’s and obstacle’s output ports.

3.5.3 Compatibility

During composition, the tests guarding the input ports of an interface are replaced with a deter-
ministic assignment modeling the port connection of the components, which is only safe if the
respective output guarantees and input assumptions match. Hence, in addition to contract compli-
ance, users have to show compatibility of components as defined in Def. 7.

Definition 7 (Compatible Composite). A composite of n components with admissible interfaces(
(C1, I∆

1 )‖. . .‖(Cn, I∆
n )
)
X is a compatible composite iff dL formula

CPO(I∆
i )

def≡
(
pre(X (v)) = pre(v)

)
→ [v :=X (v)](πout

j (X (v))→ πin
i (v))

is valid over (vectorial) equalities and assignments for input ports v ∈ IX ∩V in
i from I∆

i connected
toX (v) ∈ OX∩V out

j from I∆
j . We call CPO(I∆

i ) the compatibility proof obligation for the interfaces
I∆
i and say the interfaces I∆

i are compatible (with respect to X ) if CPO(I∆
i ) is valid for all i.

Components are compatible if the output properties imply the input properties of connected
ports. Compatibility guarantees that handing an output port’s value over to the connected input
port ensures that the input port’s input assumption πin holds, which is no longer checked explicitly
by a test, so πout

j (X (v)) → πin
i (v). To achieve local compatibility checks for pairs of connected

ports, instead of global checks over entire component models, Def. 3 restricts input assumptions
to only mention variables of the associated ports. Note that even though Def. 3 does not restrict
output guarantees, in order to show compatibility each output guarantee should also only mention
variables of the associated ports.
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3.5.4 Example: Compatibility

In our example, we have to ensure compatibility (cf. Def. 7) of the components with respect to
X . Since we have two connected ports, we discharge two compatibility proof obligations, one for
each port, cf. (50)-(51).

CPO(I∆
rc) ≡

(
d− = d̂−

)
→
(

[d̂ := d]
(∣∣d− d−∣∣ ≤ D →

∣∣∣d̂− d̂−∣∣∣ ≤ D
))

(50)

CPO(I∆
o ) ≡ (po = p̂o)→

(
[p̂o := po](∣∣po − p−o ∣∣ ≤ S ·

(
t− t−

)
→
∣∣p̂o − p̂−o ∣∣ ≤ S ·

(
t− t−

)))
(51)

Formulas (50)-(51) can be proved automatically using KeYmaera X, so the three interfaces I∆
rc ,

I∆
o and I∆

r are compatible.

3.6 Transferring Local Component Safety to System Safety
From contract compliance and compatibility proofs, Theorem 1 below transfers the safety prop-
erties in component contracts to safety of the composed system. As a result, for showing safety
of the monolithic system, we no longer need a (probably huge) monolithic proof. The proof of
Theorem 1 can be found in Appendix A.

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be components with admissible in-
terfaces I∆

1 and I∆
2 that are delay contract compliant (cf. Def. 5) and compatible with respect to X

(cf. Def. 7). Initially, assume φp
def≡
∧
v∈IX X (v) = v to bootstrap connected ports. Then, if the

side condition (52) holds (ϕi is the loop invariant used to prove the component’s contract)

|= ϕi → [∆i][ctrli][t− := t][(t′ = 1, planti)]Π
out
i (52)

for all components Ci, the parallel composition (C, I∆) =
(
(C1, I∆

1 )‖(C2, I∆
2 )
)
X then satisfies the

contract (53) with in, cp, ctrl, and plant according to Def. 6:

|=
(
t = t− ∧ φ1 ∧ φ2 ∧ φp

)
→ [(∆; ctrl; t− := t; (t′ = 1, plant);

in; cp)∗]
(
ψsafe

1 ∧ Πout
1 ∧ ψsafe

2 ∧ Πout
2

)
.

(53)

The composite contract’s precondition φp ensures that the values of connected ports are con-
sistent initially. Side condition (52) shows that a component already produces the correct output
from just its ctrl and plant; preparing the port inputs for the next loop iteration does not change the
current output.

Remark 5. The side condition (52) is trivially true for components without output ports, since
Πout
i ≡ true. This side condition can—often automatically—be verified using KeYmaera X. For

atomic components without input ports, the proof of (52) automatically follows from the contract
proof, since in; cp is empty.
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Remark 6. Because of the precondition φp and because cp is executed after every execution of
the main loop (cf. Def. 5), we know that the values of connected input and output ports coincide
in the safety property, as one would expect. Thus, for instance, if the local safety property of a
single component mentions an input port (e. g., ψsafe

1 ≡ |pr − p̂o| > 0), we can replace the input
port with the original value as provided by the output port for the composite safety property (e. g.,
ψsafe ≡ |pr − p̂o| > 0 ≡ |pr − po| > 0).

Remark 7. Theorem 1 easily extends to n components (cf. proof sketch in [17]) and also holds for
change contracts. A change port cannot be attached to a delay port and vice versa.

3.6.1 Example: Transferring Component Safety to System Safety

Example 3.5.4 proved that the remote control RC, the robot, and the obstacle component are com-
patible. The remaining proof below discharges the three side conditions from Theorem 1—one for
each component.

SC(Crc, I∆
rc) ≡ ϕrc → [∆rc][ctrlrc][t

− := t][{t′ = 1, plantrc}]
∣∣d− d−∣∣ ≤ D (54)

SC(Co, I∆
o ) ≡ ϕo → [∆o][ctrlo][t

− := t][{t′ = 1, planto}]
∣∣po − p−o ∣∣ ≤ S ·

(
t− t−

)
(55)

SC(Cr, I∆
r ) ≡ ϕr → [∆r][ctrlr][t

− := t][{t′ = 1, plantr}]true (56)

The side condition for the robot is trivially true, since the robot component has no output ports
and thus we have to verify that true holds, cf. (56). For the other side conditions we need the
respective invariants used to verify each component’s contract.

ϕrc ≡ D ≥ 0 ∧
∣∣d− d−∣∣ ≤ D (57)

ϕo ≡ S ≥ 0 ∧ 0 ≤ so ≤ S ∧
∣∣po − p−o ∣∣ ≤ S ·

(
t− t−

)
(58)

The invariant of the RC component preserves the bound for the global variable D and ensures
that the target speed is always in bounds, cf. (57). The invariant of the obstacle component also
preserves the bound for the respective global variable S, restricts the obstacle speed to valid values
and ensures that the obstacle position stays within bounds, cf. (58). Using these invariants, (54)-
(55) can be verified automatically using KeYmaera X. Note, that in this case the side conditions also
follow from Remark 5, since the RC component and the obstacle are atomic component without
input ports.

Finally, we have verified all component contracts as well as the compatibility proof obligations
and the side conditions. Theorem 1 then guarantees system safety ψsafe

sys ≡ sr > 0→ po 6= pr from
the robot’s safety property ψsafe

r ≡ sr > 0 → p̂o 6= pr together with the port connection p̂o = po
having the connected ports coincide (cf. Remark 6).

3.6.2 Automation

We implemented the proof steps of Theorem 1 as a KeYmaera X tactic, which automatically re-
duces a system safety proof to separate proofs about components5. This gave us the best of the two
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worlds: the flexibility of reasoning with components that our Theorem 1 provides, together with
the soundness guarantees we inherit from KeYmaera X, which derives proofs by uniform substi-
tution from axioms [24]. This is to be contrasted with the significant soundness-critical changes
we would have to do if we were to add Theorem 1 as a built-in rule into the KeYmaera X prover
core. Uniform substitution guarantees, e.g., that the subtle conditions on how and where input and
output variables can be read or written in components are checked correctly.

So far the theorem has only be implemented for the composition of two components. Thus, in
order to apply the tactic to our running example, we merged the RC component and the obstacle
component into a single component, which is possible since the RC and the obstacle are utterly
independent.

4 Case Studies
To evaluate our approach2, we use the running example of a remote-controlled robot (RC robot) and
revisit prior case studies on the European Train Control System (i. e., ETCS) [25], two-component
robot collision avoidance (i. e., Robix) [13], and adaptive cruise control (i. e., LLC) [10]. In ETCS,
a radio-block controller (RBC) communicates speed limits to a train, i.e., it requires the train to
have at most speed d after some point m. The RBC multi-port change contract relates distances
m,m− and demanded speeds d, d− in input assumptions/output guarantees of the form d ≥ 0 ∧
(d−)

2 − d2 ≤ 2b(m−m−) ∧ state = drive, thus avoiding physically impossible maneuvers.
In Robix, a robot measures the position of a moving obstacle with a maximum speed S. The

obstacle guarantees to not move further than S · (t− t−) in either axis between measurements,
using a delay contract.

In LLC, a follower car measures both speed vl and position xl of a leader car, with maximum
acceleration A and braking capabilities B. Hence, we use a multi-port delay contract with proper-
ties of the form 2 · (xl−x−l ) ≥ vl + v−l · t∧ 0 ≤ vl ∧−B · t ≤ vl− v−l ≤ A · t tying together speed
change and position progress.

Table 1 summarizes the experimental results of the component-based approach in comparison
to monolithic models in terms of duration and degree of proof automation. The column Contract
describes the kind of contract used in the case study (i. e., multiport, delay contract or change
contract), as well as whether or not the models use non-linear differential equations. The column
Automation indicates fully automated proofs with checkmarks; it indicates the number of built-
in tactics composed to form a proof script when user input is required. The column Duration
compares the proof duration, using Z3 [14] as a back-end decision procedure to discharge arith-
metic. The column Sum sums up the proof durations for the components (columns C1 and C2)
and Theorem 1 (column Th. 1, i. e., checking compatibility, condition (52) and the execution of
our composition proof). Checking the composition proof is fully automated, following the proof
steps of Theorem 1.

All measurements were conducted on an Intel i7-6700HQ CPU@2.6 GHz with 16GB memory.
In summary, the results indicate that our approach verification leads to performance improvements

2Implementation and full models available online at
http://www.cs.cmu.edu/˜smitsch/resource/fase17
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Table 1: Experimental results for case studies

Contract Automation Duration [s]

M
ul

ti

C
ha

ng
e

D
el

ay

N
on

-
lin

ea
r

C1 C2 Th. 1
Mono-
lithic C1 C2 Th. 1 Sum

Mono-
lithic

RC Robot X X X X X 32 101 56 189 1934
ETCS [25] X X X X X X 127 608 179 873 15306
Robix [13] X X (31) X X (96) 469 117 132 718 902
LLC [10] X X X (50) X (131) 135 351 267 753 568

and smaller user-provided proof scripts.

5 Related Work
We group related work into hybrid automata, hybrid process algebras, and hybrid programs.
Hybrid Automata and Assume-Guarantee Reasoning. Hybrid automata [1] can be composed
in parallel. However, the associated verification procedure (i. e., verify that a formula holds through-
out all runs of the automaton) is not compositional, but requires verification of the exponential
product automaton [1]. Thus, for a hybrid automaton it is not sufficient to establish a property
about its parts in order to establish a property about the automaton. We, instead, decompose ver-
ification into local proofs and get system safety automatically. Hybrid I/O automata [11] extend
hybrid automata with a notion of external behavior. The associated implementation relation (i. e.,
if automaton A implements automaton B, properties verified for B also hold for A) is respected
by their composition operation in the sense that if A1 implements A2, then the composition of A1

and B implements the composition of A2 and B. Hybrid (I/O) automata are mainly verified us-
ing reachability analysis. Therefore, techniques to prevent state-space explosion are needed, like
assume-guarantee reasoning (AGR, e. g., [3, 6, 9]), which was developed to decompose a verifi-
cation task into subtasks. In [6], timed transition systems are used to approximate a component’s
behavior by discretization. These abstractions are then used in place of the more complicated au-
tomata to verify refinement properties. The implementation of their approach is limited to linear
hybrid automata. In analogy, we discretize plants to delay contracts; however, in our approach,
contracts completely replace components and do not need to retain simplified transition systems.
A similar AGR rule is presented in [9], where the approximation drops continuous behaviors of
single components entirely. As a result, the approach only works when the continuous behavior is
irrelevant to the verified property, which rarely happens in CPS. Our change and delay contracts
still preserve knowledge about continuous behavior. The AGR approach of [3] uses contracts con-
sisting of input assumptions and output guarantees to verify properties about single components:
a component is an abstraction of another component if it has a stricter contract. The approach is
restricted to constant intervals, i. e., static global contracts as in [16].
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In [5], a component-based design framework for controllers of hybrid systems with linear dy-
namics based on hybrid automata is presented. It focuses on checking interconnections of compo-
nents: alarms propagated by an out-port must be handled by the connected in-ports. We, too, check
component compatibility, but for contracts, and focus on transferring proofs from components to
the system level. We provide parallel composition, while [5] uses sequential composition. The
compositional verification approach in [2] bases on linear hybrid automata using invariants to over-
approximate component behavior and interactions. However, interactions between components are
restricted to synchronization. (i. e., no variable state can be transferred between components).

In summary, aforementioned approaches are limited to linear dynamics [5] or even linear hybrid
automata [2], use global contracts [3], focus on sequential composition [5] or rely on reachabil-
ity analysis, over-approximation and model checking [3, 6, 9]. We, in contrast, focus on theorem
proving in dL, using change and delay contracts and handle non-linear dynamics and parallel com-
position. Most crucially, we focus on transfer of safety properties from components to composites,
while related approaches are focused on property transfer between different levels of abstraction
[3, 6, 9].

Hybrid process algebras are compositional modeling formalisms for the description of behav-
ior and interaction of processes, based on algebraic equations. Examples are Hybrid χ [26], HyPA
[18] or the Φ-Calculus [27]. Although the modeling is compositional, for verification purposes
the models are again analyzed using simulation or reachability analysis in a non-compositional
fashion (e. g., Hybrid χ using PHAVer [29], HyPA using HyTech [12], Φ-Calculus using SPHIN
[28]), while we focus on exploiting compositionality in the proof.

Hybrid Programs. Quantified hybrid programs enable a compositional verification of hybrid
systems with an arbitrary number of components [20], if they all have the same structure (e. g.,
many cars, or many robots). They were used to split monolithic hybrid program models into
smaller parts to show that adaptive cruise control prevents collisions for an arbitrary number of cars
on a highway [10]. We focus on different components. Similarly, the approach in [15] presents a
component-based approach limited to traffic flow and global contracts.

Our approach extends [16], which was restricted to contracts over constant ranges. Such global
contracts are well-suited for certain use cases, where the change of a port’s value does not matter for
safety, such as the traffic flow models of [15]. However, for systems such as the remote-controlled
robot obstacle avoidance from our running example (cf. Section 3.2), which require knowledge
about the change of certain values, global contracts only work for considerably more conservative
models (e. g., robot and obstacle must stay in fixed globally known regions, since the obstacle’s last
position is unknown). Contracts with change and delay allow more liberal component interaction.

6 Conclusion and Future Work
Component-based modeling and verification for hybrid systems splits monolithic system verifica-
tion into proofs about components with local responsibilities. It reduces verification effort com-
pared to proving monolithic models, while change and delay contracts preserve crucial properties
about component behavior to allow liberal component interaction.
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Change contracts relate a port’s previous value to its current value (i. e., the change since the last
port transmission), while delay contracts additionally relate to the delay between measurements.
Properties of components, described by component contracts and verified using KeYmaera X,
transfer to composed systems of multiple compatible components without re-verification of the
entire system. We have shown the applicability of our approach on a running example and three
existing case studies, which furthermore demonstrated the potential reduction of verification effort.
We implemented our approach as a KeYmaera X tactic, which automatically verifies composite
systems based on components with verified contracts without increasing the trusted prover core.

For future work, we plan to (i) introduce further composition operations (e. g., error-prone
transmission), and (ii) provide support for system decomposition by discovery of output properties
(i. e., find abstraction for port behavior).
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([; ]) [α][β]φ↔ [α; β]φ

([∪]) [α]φ ∧ [β]φ↔ [α ∪ β]φ

([:=]) [x := e]φ(x)↔ φ(e)

([?]) H → ψ ↔ [?H]ψ

(Wr)
Γ ` ∆

Γ ` φ,∆

(Wl)
Γ ` ∆

Γ, φ ` ∆

(cut)
Γ ` φ,∆ Γ, φ ` ∆

Γ ` ∆

([:∗])
∀X [x :=X]φ

[x := ∗]φ

([] M)
φ ` ψ

[α]φ ` [α]ψ

(CER)
Γ ` C (Q) ,∆ P ↔ Q

Γ ` C (P ) ,∆

(CEL)
Γ, C (Q) ` ∆ P ↔ Q

Γ, C (P ) ` ∆

(→r)
Γ, φ ` ψ,∆

Γ ` φ→ ψ,∆

(→l)
Γ ` φ,∆ Γ, ψ ` ∆

Γ, φ→ ψ ` ∆

(∧r)
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆

(∧l)
Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆

(∀l)
Γ, φ(X) ` ∆

Γ,∀xφ(x) ` ∆

(∀r)
Γ ` φ(s(X1, . . , Xn)),∆

Γ ` ∀xφ(x),∆
1

([]gen)
Γ ` [α]φ,∆ φ ` ψ

Γ ` [α]ψ,∆

(ind)
Γ ` φ,∆ φ ` [α]φ φ ` ψ

Γ ` [α∗]ψ,∆

(CE)
p (x̄)↔ q (x̄)

C (p (x̄))↔ C (q (x̄))

1s is a new (Skolem) function symbol and X1, . . , Xn are all free logical variables of ∀xφ(x).

Figure 3: Proof Rules, see [24]

A Proof of Theorem 1
This section presents the proof of Theorem 1. Throughout this section, we use the proof rules and
axioms listed in Fig. 3, for more details see [24]. The axioms for the transformation of hybrid
programs can be applied using the CER and CEL proof rules, which allow the application of
logical equivalences in any context. The usage of CER and CEL will not be explicitly mentioned
throughout the paper.

A.1 Proof Sketch
The proof for Theorem 1 follows the proof sketch of [16]. The main idea is to match the behavior
and properties of the composite with the behavior of its components, so that component proofs fill
in most proof obligations. We

1. split the proof along component contracts (prove that the composite preserves the component
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contracts)

2. reorder port assignments to match the order in the respective component (Lemma 4)

3. drop port assignments and control statements, which are irrelevant for the current contract
(Lemma 1)

4. re-introduce (idle) tests for deterministic port assignments (Lemma 5, Lemma 6 and Corol-
lary 1)

5. replace deterministic with non-deterministic assignments to resemble port behavior of un-
connected components (Lemma 3)

6. drop plant behavior that is irrelevant for the current contract (Lemma 2)

These steps are implemented as a KeYmaera X tactic, which can be used to check Theorem 1 for
components with verified contracts.

A.2 Lemmas and Implementation
We first repeat and adapt the lemmas [16, Lemma 1–Lemma 6] here for easy reference, before we
proceed with the proof of Theorem 1. Additionally, we provide insights on how these lemmas were
implemented in KeYmaera X.

Lemma 1 (Drop Control). Let A be an arbitrary dL formula and α, β be hybrid programs, with
FV (A) ∩BV (β) = ∅ and FV (α) ∩BV (β) = ∅. Then

[α]A→ [β][α]A and [α]A→ [α][β]A

are valid.

Proof of Lemma 1, cf. [16, Lemma 1]. Since the lemma bases on assumptions about the
intersection of free and bound variables of program constants α and β, it is not expressible in
KeYmaera X yet. However, when implemented as a tactic that operates on concrete programs α
and β, their free and bound variables can be computed (e. g., α ≡ x := y has bound variable x and
free variable y) and the assumptions checked; uniform substitution in the KeYmaera X kernel will
fail the tactic if it operates on programs that violate the assumptions.

Lemma 2 (Drop Plant). Let θ1(x1) and θ2(x2) be terms possibly containing x1 (respectively x2),
where x1 and x2 are vectors with x1 6= x2. Let t be a variable with t /∈ x1 and t /∈ x2. Let A(x1)
be an arbitrary dL formula over x1 and H1(x1), H2(x2) be predicates over x1 (respectively x2).
Then

[(t′ = 1, x′1 = θ1(x1)&H1(x1))]A(x1)→
[(t′ = 1, x′1 = θ1(x1), x′2 = θ2(x2)&H1(x1) ∧H2(x2))]A(x1)

is valid.
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Proof of Lemma 2, cf. [16, Lemma 2]. Similarly to Lemma 1, we implement the lemma as a
tactic that operates on concrete programs and relies on uniform substitution for soundness. That
way, differential equations x′ = θ can be dropped one by one from the ODE system, instead of
introducing vectorial ~x′ = ~θ into the prover kernel.

Lemma 3 (Overapproximate Assignment). Let A(x) be an arbitrary dL formula, θ be a term, and
x be a variable. Then

[x := ∗]A(x)→ [x := θ]A(x)

is valid.

Proof of Lemma 3, cf. [16, Lemma 3]. We proved this lemma as a derived axiom and it can thus
be used as a fact in subsequent KeYmaera X proofs. The proof in KeYmaera X first performs the
deterministic and the non-deterministic assignment and then instantiates the resulting all-quantifier
with θ.

Lemma 4 (Reorder Programs). Let x, y, a, b be variables,A,F,G be arbitrary dL formulas and
B(a) be a dL formula allowed to mention a bound variable a free in B. Then

[x := a; y := b]A↔ [y := b;x := a]A (59)
[x := ∗; y := ∗]A↔ [y := ∗;x := ∗]A (60)
[x := ∗; y := b]A↔ [y := b;x := ∗]A (61)
[x := ∗; ?B(a)]A↔ [?B(a);x := ∗]A (62)
[x := a; ?B(a)]A↔ [?B(a);x := a]A (63)

[?F ; ?G]A↔ [?G; ?F ]A (64)

are valid.

Lemma 4. The proofs follow from the definition of (non-deterministic) assignments and the axiom
for tests. We start with proofing (59)–(61). We only show one direction of the equivalence–the
other one follows accordingly.

∗
A(a, b) ` A(a, b)

[; ],[:=],[:=][x := a; y := b]A(x, y) ` [y := b;x := a]A(x, y)
→r ` (59)

∗
[x := ∗]A(x, b) ` [x := ∗]A(x, b)

[; ],[:=][x := ∗; y := b]A(x, y) ` [y := b;x := ∗]A(x, y)
→r ` (60)

∗
∀x . ∀y . A(x, y) ` ∀x . ∀y . A(x, y)

[; ],[:∗][x := ∗; y := ∗]A(x, y) ` [y := ∗;x := ∗]A(x, y)
→r ` (61)
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Next, we show formulas (62)–(63). Again we just show one direction of the equivalence–the
second direction follows accordingly.

∗
[?B(a)]A(a, y) ` [?B(a)]A(a, y)

[:=],[; ][x := a; ?B(a)]A(x, y) ` [?B(a);x := a]A(x, y)
→r ` (62)

∗
B(a) ` A(x1, y), B(a)

∗
A(x1, y), B(a) ` A(x1, y)

[?],→l ([?B(a)]A(x1, y)) , B(a) ` A(x1, y)
∀l ∀x . ([?B(a)]A(x, y)) , B(a) ` A(x1, y)
∀r ∀x . ([?B(a)]A(x, y)) , B(a) ` ∀x . A(x, y)

[?],→r ∀x . ([?B(a)]A(x, y)) ` [?B(a)] (∀x . A(x, y))
[; ],[:∗] [x := ∗; ?B(a)]A(x, y) ` [?B(a);x := ∗]A(x, y)
→r ` (63)

Finally, we show (64). First, we apply the tests and then use the equivalence
(
a→ (b→ c)

)
↔(

b→ (a→ c)
)

(i. e., step impl).
∗

F → (G→ A) ` F → (G→ A)
implF → (G→ A) ` G→ (F → A)
[?] F → ([?G]A) ` [?G] (F → A)

[?],[; ] [?F ; ?G]A ` [?G; ?F ]A
→r ` (64)

Lemma 5 (Introduce Test). Let A be an arbitrary dL formula, α be a hybrid program and F be a
formula. Then

[α]F → ([α; ?F ]A↔ [α]A)

Proof of Lemma 5, cf. [16, Lemma 5]. We proved this lemma as a derived axiom and it can
thus be used as a fact in subsequent KeYmaera X proofs.

Lemma 6 (Weaken Test). Let A be an arbitrary dL formula and F and G be formulas. Then(
([?G]A) ∧ (F → G)

)
→ [?F ]A

Proof of Lemma 6, cf. [16, Lemma 6].
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Corollary 1 (Weaken Test – Context). Let A, F and G be arbitrary dL formulas and let α be an
arbitrary program. Then (

([α][?G]A) ∧ ([α] (F → G))
)
→ [α][?F ]A

Corollary 1. After removing α we can again use Lemma 6.
∗

L. 6 ([?G]A) ∧ (F → G) ` [?F ]A
[] M (

[α] ([?G]A ∧ (F → G))
)
` [α][?F ]A

[] split inv(([α][?G]A) ∧ ([α] (F → G))
)
` [α][?F ]A

→r `
(
([α][?G]A) ∧ ([α] (F → G))

)
→ [α][?F ]A

Both, Lemma 6 and Corollary 1, could be verified as derived axioms in KeYmaera X. Since the
formulas F , G and A, and the program constant α are not restricted to reasoning about any number
of specific variables, Lemma 6 can be verified by applying the implications and tests, which leads
to the same formulas in antecedent and succedent. For Corollary 1, we used box monotonicity to
remove the context (i. e., program α), which then allows application of Lemma 6.

Note, that in the proof of Theorem 1 we will use these lemmas in the context of other logical
and modal formulas. In the corresponding proof steps, we implicitly assume that the lemma conse-
quence is cut into the context, and then the cut is shown using the appropriate choice from axioms
K, G, and CE [24] to unpeel the context and use the lemma top level.

A.3 Proof for Two Components
From these lemmas, next we prove that the composition of two safe components with interfaces
result in a safe composed system, given proven contract compliance and compatibility of the com-
ponents.

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be components with admissible in-
terfaces I∆

1 and I∆
2 that are delay contract compliant (cf. Def. 5) and compatible with respect to X

(cf. Def. 7). Initially, assume φp
def≡
∧
v∈IX X (v) = v to bootstrap connected ports. Then, if the

side condition (52) holds (ϕi is the loop invariant used to prove the component’s contract)

|= ϕi → [∆i][ctrli][t− := t][(t′ = 1, planti)]Π
out
i (52)

for all components Ci, the parallel composition (C, I∆) =
(
(C1, I∆

1 )‖(C2, I∆
2 )
)
X then satisfies the

contract (53) with in, cp, ctrl, and plant according to Def. 6:

|=
(
t = t− ∧ φ1 ∧ φ2 ∧ φp

)
→ [(∆; ctrl; t− := t; (t′ = 1, plant);

in; cp)∗]
(
ψsafe

1 ∧ Πout
1 ∧ ψsafe

2 ∧ Πout
2

)
.

(53)
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Theorem 1. For space reasons let

(C3, I
δ
3)

def≡
(
(C1, I

δ
1)‖(C2, I

δ
2)
)
X

ctrl3
def≡ (ctrl1; ctrl2) ∪ (ctrl2; ctrl1)

plant3
def≡ plant1, plant2

φ3
def≡ φ1 ∧ φ2 ∧ φp

ψsafe
3

def≡ ψsafe
1 ∧ ψsafe

2

Πout
3

def≡

( ∧
v∈V out

πout
1 (v)

)
∧

( ∧
v∈V out

πout
2 (v)

)
We know that

DC(Cδ
1 , I

δ
1 )

Def. 5≡ t = t− ∧ φ1 →

[
(
∆1; ctrl1; t− := t; (t′ = 1, plant1) ; in1; cp1

)∗
]

ψsafe
1 ∧

∧
v∈V out

1

πout
1 (v)

 (65)

DC(Cδ
2 , I

δ
2 )

Def. 5≡ t = t− ∧ φ2 →

[
(
∆2; ctrl2; t− := t; (t′ = 1, plant2) ; in2; cp2

)∗
]

ψsafe
2 ∧

∧
v∈V out

2

πout
2 (v)

 (66)

DC(Cδ
3 , I

δ
3 )

Def. 5≡ t = t− ∧ φ3 →

[
(
∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3

)∗
]
(
ψsafe

3 ∧ Πout
3

)
(67)

CPO(Iδ1 )
Def. 7≡ pre(X (v)) = pre(v)→ [v :=X (v)]

(
πout

1 (X (v))→ πin
2 (v)

)
and (68)

CPO(Iδ2 )
Def. 7≡ pre(X (v)) = pre(v)→ [v :=X (v)]

(
πout

2 (X (v))→ πin
1 (v)

)
for all v ∈ IX ∩ V in

1,2 .

(69)

We have to show that the contract (67) of the parallel composition DC(Cδ
3 , I

δ
3 ) is valid. We

know that formulas (65) and (66) are valid, hence there exist invariants ϕ1 and ϕ2 such that:

t = t− ∧ φ1 → ϕ1 (70)
ϕ1 → [∆1; ctrl1; t− := t; (t′ = 1, plant1) ; in1; cp1]ϕ1 (71)

ϕ1 →

(
ψsafe

2 ∧
∧

v∈V out

πout
1 (v)

)
(72)

If (65) and (66) were verified using loop induction, the invariants are even known. Note, that ϕ1

is an inductive loop invariant for the first component, so it can be phrased such that FV (ϕ1) ⊆
V (C1) ∪ V global ∪ {t, t−}, accordingly for ϕ2. Formulas (70)–(72) are phrased accordingly for
component C2.
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By imply-right and loop induction, where we choose ϕ3 = ϕ1∧ϕ2∧φp (i. e., the loop invariant
for the proof is the conjunction of the two invariants known to exist from the independent proofs,
plus the knowledge that the values of connected ports are equal), we get
t = t− ∧ φ3 ` ϕ3 ϕ3 ` [∆3; ctrl3; t− := t; (t′ = 1, plant3 ) ; in3; cp3]ϕ3 ϕ3 `

(
ψsafe

3 ∧ Πout
3

)
ind t = t− ∧ φ3 `

[
(∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3)

∗] (
ψsafe

3 ∧ Πout
3

)
→r ` t = t− ∧ φ3 →

[
(∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3)

∗] (
ψsafe

3 ∧ Πout
3

)
We will transform the three resulting branches until we get formulas that correspond to (70),

(71) and (72). To prove the induction base case and the use case, we use the loop invariants ϕ1 and
ϕ2, for which (70) and (72) hold.

∗
(70) t = t−, φ1 ` ϕ1
Wl t = t−, φ1, φ2, φ

p ` ϕ1
∧l t = t− ∧ φ1 ∧ φ2 ∧ φp ` ϕ1

∗
(70) t = t−, φ2 ` ϕ2
Wl t = t−, φ1, φ2, φ

p ` ϕ2
∧l t = t− ∧ φ1 ∧ φ2 ∧ φp ` ϕ2

∗
φp ` φp

Wl t = t−, φ1, φ2, φ
p ` φp

∧lt = t− ∧ φ1 ∧ φ2 ∧ φp ` φp
∧r t = t− ∧ φ1 ∧ φ2 ∧ φp ` ϕ1 ∧ ϕ2 ∧ φp
def t = t− ∧ φ3 ` ϕ3

∗
(72) ϕ1 ` ψsafe

1 ∧
∧
v∈V out

1
πout(v)

Wlϕ1, ϕ2, φ
p ` ψsafe

1 ∧
∧
v∈V out

1
πout(v)

∗
(72) ϕ2 ` ψsafe

2 ∧
∧
v∈V out

2
πout(v)

Wlϕ1, ϕ2, φ
p ` ψsafe

2 ∧
∧
v∈V out

2
πout(v)

∧r ϕ1, ϕ2, φ
p `
(
ψsafe

1 ∧
∧
v∈V out

1
πout(v)

)
∧
(
ψsafe

2 ∧
∧
v∈V out

2
πout(v)

)
∧l ϕ1 ∧ ϕ2 ∧ φp `

(
ψsafe

1 ∧
∧
v∈V out

1
πout(v)

)
∧
(
ψsafe

2 ∧
∧
v∈V out

2
πout(v)

)
def ϕ3 `

(
ψsafe

3 ∧ Πout
3

)
Invariance of φp ≡

∧
v∈IX X (v) = v follows immediately, since connected ports are always

assigned in cpi (i. e., v = X (v)).
The implementation of the tactic for the base case and use case is fairly straightforward. First

apply the structural proof rules (i. e., ∧ and weakening), then apply the proofs of the single com-
ponents.

It remains to show the induction step, which we do by proving invariance of ϕ1 and ϕ2 sepa-
rately.

def

∧l

[; ]

[]split,∧r

. . . ¬
ϕ1, ϕ2, φp ` [∆3][ctrl3][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1

. . . ­

ϕ1, ϕ2, φp ` [∆3][ctrl3][t− := t][(t′ = 1, plant3)][in3; cp3] (ϕ1 ∧ ϕ2)

ϕ1, ϕ2, φp ` [∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3] (ϕ1 ∧ ϕ2)

ϕ1 ∧ ϕ2 ∧ φp ` [∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3] (ϕ1 ∧ ϕ2)

ϕ3 ` [∆3; ctrl3; t− := t; (t′ = 1, plant3) ; in3; cp3]ϕ3

We have to prove that both, ϕ1 (i. e., ¬) and ϕ2 (i. e., ­) hold. We illustrate the strategy only
for branch ¬, because branch ­ follows in a similar manner.

We apply the proof rule for non-deterministic choice and get two branches.
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[∪],[]split,∧r

. . . ®
ϕ1, ϕ2, φp ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1

. . . ¯

def
ϕ1, ϕ2, φ

p ` [∆3][((ctrl1; ctrl2) ∪ . . .)][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1

ϕ1, ϕ2, φ
p ` [∆3][ctrl3][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1

¬ continued
We will now transform ® until we get (71). First, we remove control ctrl2, and reorder in3 so

that we can then remove the assignments in2. We reintroduce tests and turn the deterministic as-
signments of connected ports into non-deterministic ones until they behave like non-connected in-
puts, and finally get (71). The detailed proof steps are explained below and can be cross-referenced
using enumeration and the step number in the sequent proof.

For space reasons we define

F out
2

def≡ ϕ2 → [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant1, plant2)]Πout
2 .

∗
(71) ϕ1 ` [∆1][ctrl1][t− := t][(t′ = 1, plant1)][in1][cp1]ϕ1
Wl ϕ1, ϕ2 ` [∆1][ctrl1][t− := t][(t′ = 1, plant1)][in1][cp1]ϕ1

cf. 13.,L. 1 ϕ1, ϕ2 ` [∆1; ∆2][ctrl1][t− := t][(t′ = 1, plant1)][in1][cp1]ϕ1
cf. 13.,L. 1 ϕ1, ϕ2 ` [∆1; ∆2][ctrl1; ctrl2][t− := t][(t′ = 1, plant1)][in1][cp1]ϕ1

cf. 12.,def,L. 4 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant1)][in1][cp1]ϕ1
cf. 11.,L. 2 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant1, plant2)][in1][cp1]ϕ1
cf. 10.,def ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1][vj := ∗][?πin

1 (vj)][cp∗1]ϕ1
cf. 9.,L. 3 ϕ1, ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1][vj :=X (vj)][?π

in
1 (vj)][cp∗1]ϕ1

cf. 8.,C. 1 ϕ1, ϕ2, φ
p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1][vj :=X (vj)][?π

out
2 (X (vj))][cp∗1]ϕ1

cf. 7.,L. 4 ϕ1, ϕ2, φ
p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][?πout

2 (X (vj))][in∗1][vj :=X (vj)][cp∗1]ϕ1
cf. 6.,def ϕ1, ϕ2, φ

p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][?πout
2 (X (vj))][in∗1; cp1]ϕ1

cf. 5.,L. 5 ϕ1, ϕ2, φ
p, F out

2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1; cp1]ϕ1
cf. 4.,L. 1 ϕ1, ϕ2, φ

p, F out
2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1; in∗2; cp1]ϕ1

cf. 3.,L. 1 ϕ1, ϕ2, φ
p, F out

2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1; in∗2; cp1; cp2]ϕ1
cf. 2.,def,L. 4ϕ1, ϕ2, φ

p, F out
2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1 . . .±

cf. 1.,cut ϕ1, ϕ2, φ
p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in3; cp3]ϕ1

® continued

Up to this point the proof of the induction step could almost be implemented one-to-one as a
tactic. However, the following proof steps require detailed knowledge of the exact structure of the
respective formulas, which complicates automatic verification. The dropping of a specific part re-
quires the dismembering of sequential compositions to separate boxes, followed by a reassembling
of the remaining boxes to sequential compositions after the removal. Especially rotation of tests
and assignments in steps 7 and 10 require a great number of decompositions and compositions,
and multiple applications of the correct part of Lemma 4.

In detail, we applied the following lemmas:
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1. First, we cut in F out
2 , which we will need later throughout the proof, to verify the side con-

dition of Lemma 5. The side condition of the cut is verified in ±.

2. We use Lemma 4 to reorder the assignments in in3 and cp2 in a way that the assignments of
C1 precede the ones of C2. Note, that in3 contains only the non-connected ports of C1 and
C2, while the connected ports are still in cp3. Hence, we use in∗1 and in∗2 to denote that these
assignments are not the full in1 and in2.

3. We apply Lemma 1 to remove cp2, with α
def≡ cp1, β

def≡ cp2 and A
def≡ ϕ1, so FV (α) ∩

BV (β) = ∅ since FV (cp1) ⊆ V (C1) and BV (cp2) ⊆ V in
2 (and thus BV (cp2) ⊆ V (C2) \(

V global ∪ {t, t−}
)
) are disjoint. Further FV (A) ∩ BV (β) = ∅ since FV (ϕ1) ⊆ V (C1) and

V (C1) ∩ V (C2) \
(
V global ∪ {t, t−}

)
= ∅.

4. We apply Lemma 1 to remove in∗2, with α
def≡ in∗1, β

def≡ in∗2 and A
def≡ [cp1]ϕ1, so FV (α) ∩

BV (β) = ∅ since FV (in∗1) ⊆ V (C1) and BV (cp2) ⊆ V in
2 (and thus BV (cp2) ⊆ V (C2) \(

V global ∪ {t, t−}
)
) are disjoint. Further, FV (A)∩BV (β) = ∅ since FV ([cp1]ϕ1) ⊆ V (C1)

and V (C1) ∩ V (C2) \
(
V global ∪ {t, t−}

)
= ∅.

5. By application of Lemma 5, we can insert a test for πout
2 (X (vj)), for the leftmost determin-

istic assignment in cp1 without changing the behavior (side condition follows immediately
from F out

2 ). Additionally, we hide F out
2 for space reasons.

6. We then split cp1 into two parts: the leftmost assignment and cp∗1, which represents the
remaining port assignments.

7. We change the order of programs to move the introduced test for πout
2 (X (vj)) after the left-

most deterministic assignment. This is possible because in∗1 and cp1 bind only input vari-
ables from C1, while πout

2 (X (vj)) only reasons about variables from C2, so BV (in∗1; cp1) ∩
FV (πout

2 (X (vj))) = ∅ (cf. Lemma 4).

8. We then relax the test to πin
vj

using compatibility as follows.

∗
ϕ1, ϕ2,

∧
v∈IX X (v) = v ` [. . . ; pre(X (vj)) :=X (vj); . . . ; pre(vj) := vj; . . .] (pre(X (vj)) = pre(vj))

def ϕ1, ϕ2, φ
p ` [∆1; ∆2] (pre(X (vj)) = pre(vj))

def ϕ1, ϕ2, φ
p ` [∆3] (pre(X (vj)) = pre(vj))

L. 1 ϕ1, ϕ2, φ
p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1] (pre(X (vj)) = pre(vj))

(68) ϕ1, ϕ2, φ
p ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant3)][in∗1][vj :=X (vj)] (πout

2 (X (vj))→ πin
1 (vj))

Step L. 1 is justified from pre(X (vj)) ∈ V −2 and pre(vj) ∈ V −1 with Def. 3 specifying
that (BV (ctrl) ∪BV (plant) ∪BV (cp)) ∩ V − = ∅, and all variables except global ones
being disjoint across components. We then expand ∆1; ∆2 according to Def. 5, so we get
pre(X (vj)) := X (vj) and pre(vj) := vj , among further assignments to previous values per
X . This concludes the step, since φp holds initially and thus X (vj) = vj .
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9. By Lemma 3 we can replace the deterministic port assignment with a non-deterministic as-
signment.

10. After repeating steps 8–9 once for every connected port vj and after multiple applications of
Lemma 4 (to change the order of the assignments) get in1; cp1.

11. Using Lemma 2, we can remove the plant of component two (i. e., plant2), becauseBV (plant2)∩
FV ([in1][cp1]ϕ1) = ∅.

12. We use Lemma 4 to reorder assignments in ∆3 in a way that assignments to previous vari-
ables from the first component (i. e., ∆1) precede the ones to previous variables from the
second component (i. e., ∆2).

13. By multiple applications of Lemma 1, we can remove all remaining control parts of compo-
nent 2 until we get (71) (for the second component).

For the proof to close in the implementation, we have to ensure that the resulting formula
has the exact same structure as (71), which again requires a larger number of decomposition and
composition steps.

If we use multi-ports, the test for the multi-port has to be moved at the respective position and
the assignments to all of the port’s variables have to be kept together.

The side condition of the cut from step 1 is verified below.
∗

cf. 3. ϕ2 ` [∆2][ctrl2][t− := t][(t′ = 1, plant2)]Πout
2

cf. 2.,L. 1ϕ2 ` [∆1; ∆2][ctrl2][t− := t][(t′ = 1, plant2)]Πout
2

cf. 2.,L. 1ϕ2 ` [∆1; ∆2][ctrl1; ctrl2][t− := t][(t′ = 1, plant2)]Πout
2

def ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant2)]Πout
2

cf. 1.,L. 2ϕ2 ` [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant1, plant2)]Πout
2

→r ` ϕ2 → [∆3][ctrl1; ctrl2][t− := t][(t′ = 1, plant1, plant2)]Πout
2

±: Side Condition, cut

1. We apply Lemma 2 to get rid of plant1.

2. By multiple applications of Lemma 1 we can remove ∆1 and ctrl1.

3. The proof closes, since we know that the side condition of Theorem 1 holds, cf. (52).

The proof for ¯ works almost alike, where the only difference is the order of the control parts.
Thus we can apply the same proof steps as above, except step 13, where we have to use the second
part of Lemma 1.

The proof for ­ follows accordingly, usingϕ2 in place ofϕ1. Thus, we conclude that DC(Cδ
3 , I

δ
3 )

is valid.
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A.4 Proof Sketch for n Components.
So far, we proved Theorem 1 for two components. Next, we sketch how the proof can be extended
to n components. In order to generalize the proof to n interfaces, we have to consider n change
contracts, one for each component with its interface (Ci, I∆

i ) (for i ∈ {0, . . . , n}).

DC(Cδ
i , I

δ
i ) ≡t = t− ∧ φi → [

(
∆i; ctrli; t− := t; (t′ = 1, planti)

)∗
][ini; cpi]ψi (73)

Again, we assume that formula (73) was proven for all i, hence there exist invariants ϕi (cf. (70)-
(72)). We still need to verify DC(Cδ, Iδ), except that plant now executes all n plants in parallel,
cp contains all old port assignments of all components and ctrl contains all n! permutations of all
control parts, i. e.,

ctrl ≡ (ctrl1; ctrl2; ...; ctrln)∪
(ctrl2; ctrl1; ...; ctrln)∪
...

(ctrln; ...; ctrl2, ctrl1)

and

cp ≡cp1; cp2; ...; cpn

The order of port assignments is irrelevant because of Lemma 4, since all port assignments are
independent.

We define our invariant ϕ as the conjunction of all ϕi and φp. The base case and use case follow
immediately from the loop invariants ϕi, analogous two the two-component case. It remains to the
induction step, which can be traced back to the steps carried out to prove the two-component
version.

We consider one example branch, where we need to show that ϕ2 holds after each of its runs:∧
i

ϕi, φ
p ` [∆3; (ctrl1; ctrl2; ...; ctrln) ; (t′ = 1, plant1)][in3; cp3]ϕ2

We ultimately have to reduce the branch to the loop induction step of component C2 (cf. (71)).
Thus, we have to transform the connected ports back to unconnected ones and remove the unnec-
essary parts. First, we remove all in and cp parts, which do not belong to C2. Steps 5 to eleven
work alike. Then, the plants can be removed, using Lemma 2. The unnecessary control parts can
be removed using Lemma 1. In a similar way, all other branches can be proved.
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