
CMU 18-447
S’09 L7-1
© 2009
J. C. Hoe

18-447 Lecture 7:
Performance --

how to summarize & comparep
James C. Hoe

Dept of ECE, CMU
February 9, 2009

Announcements: Midterm 2/16 in class, Lectures 1~7
Read P&H Ch 5 for next LectureRead P&H Ch 5 for next Lecture

Handouts: MIPS R4000 ISA Manual on BlackBoard

CMU 18-447
S’09 L7-2
© 2009
J. C. Hoe

Latency vs. Throughput
Latency (a time measure)
­ time between start and finish of a single task

most applicable in interactive applications­ most applicable in interactive applications
Throughput (a rate measure)
­ number of tasks finished in a given unit of time
­ most applicable in batch applications

Throughput is not always 1/latency when concurrency
is involved (think bus vs. F1 race car)

i l t ?? i th h t­ improve latency ⇒?? improve throughput
­ improve throughput ⇒?? improve latency

Not completely distinct when different granularities
are considered
­ increasing throughput of component processing shortens the

latency of the overall task

CMU 18-447
S’09 L7-3
© 2009
J. C. HoeIt is all about time

Performance = 1 / Time
­ shorter latency ⇒ higher performance
­ higher throughput (job/time) ⇒ higher performanceg g p (j) g p

UNIX “time” command
­ user CPU time: time spent running your code
­ system CPU time: time spent running other code on behalf of

your code
­ elapsed time: wall-clock time

elapsed time user CPU time system CPU time = ­ elapsed time – user CPU time – system CPU time =
time running other code unrelated to your code

1. Be precise about what you measured when reporting
2. Rule of thumb: measure and report wall-clock time on

unloaded system

CMU 18-447
S’09 L7-4
© 2009
J. C. Hoe

IPC, MIPS and GHz
The metrics you are most likely to see in marketing
are IPC (instruction per cycle), MIPS (million
instruction per second) and GHzinstruction per second) and GHz

How are they incomplete?
Iron Law on Performance

wall clock time = (time/cyc) (cyc/inst) (inst/program)

­ MIPS and IPC are averages which instructions matter
­ GHz can be boosted artificially by design (lower the other 2

terms) e.g., 1.4GHz P4 ≈ 1.0GHz P3

1/GHz 1/MIPS 1/IPC

CMU 18-447
S’09 L7-5
© 2009
J. C. Hoe

Pseudo FLOPS

Scientific computing community often use pseudo
FLOPS as performance metric

nominal # of floating point operations
program runtime

­ e.g. FFT of size N has nominally 5N log2(N) FP operations

Is this a good, fair metric to compare
machine + algorithm combinations? machine + algorithm combinations?

­ not all FFT algorithms have the same FP OP count
­ not all FP OPs are equal (FADD vs FMULT vs FDIV)

Ans: yes, but only as long as you are talking about
computing the same problem

CMU 18-447
S’09 L7-6
© 2009
J. C. HoeMulti-dimensional Comparisons:

e.g., Runtime and Energy
Interested in not only minimizing individual metrics but
also consider the tradeoff between them, i.e.,also cons der the tradeoff between them, .e.,
­ may be willing to spend more energy to run faster
­ conversely, may be willing to run slower for less energy spent
­ but never use more energy to run slower

Derived combined metrics of interest
­ power = E / T
­ energy-delay-product = E ⋅Tn rgy ay pr uct E
­ in general, f(E, T)

Other dimensions: implementation cost, risk, social
factors…

CMU 18-447
S’09 L7-7
© 2009
J. C. Hoe

Pareto Optimality

en
er

gy

runtime

Pareto Front

CMU 18-447
S’09 L7-8
© 2009
J. C. Hoe

Comparing and Summarizing
Performance

CMU 18-447
S’09 L7-9
© 2009
J. C. Hoe

Relative Performance

Performance = 1 / Time
­ shorter latency ⇒ higher performance
­ higher throughput (job/time) ⇒ higher performance

Pop Quiz
if X is 50% slower than Y and TimeX=1.0s, what is
TimeY

­ Case 1: TimeY = 0.5s since TimeY/TimeX=0.5

­ Case 2: TimeY = 0.66666s since TimeX/TimeY=1.5

CMU 18-447
S’09 L7-10
© 2009
J. C. Hoe

Relative Performance

“X is n times faster than Y” means
n = PerformanceX / PerformanceYX Y

= ThroughputX / ThroughputY

= TimeY / TimeX

“X is m% faster than Y” means
1+m/100 = PerformanceX / PerformanceY

To avoid confusion, stick with definition of “faster”
­ for case 1 say “Y is 100% faster than X”
­ for case 2 say “Y is 50% faster than X”

CMU 18-447
S’09 L7-11
© 2009
J. C. Hoe

Speedup

If X is an “enhanced” version of Y, the “speedup”
of the enhancement is

S = Timewithout enhancement / Timewith enhancement

= TimeY / TimeX

CMU 18-447
S’09 L7-12
© 2009
J. C. Hoe

Amdahl’s Law on Speedup
Suppose an enhancement speeds up a fraction f of
a task by a factor of Sf

time ld

f(1 - f)

timeold

(1 - f)

timenew

f/Sf

timenew = timeold·((1-f) + f/Sf)
Soverall = 1 / ((1-f) + f/Sf)

If f is small Sf doesn’t matter. Concentrate effort on
improving frequently occurring events or frequently used

mechanisms.

CMU 18-447
S’09 L7-13
© 2009
J. C. HoeSummarizing Performance

When comparing two computers X and Y, the
relative performance of X and Y depends strongly
on what X and Y are asked to do
­ X may be m% faster than Y on application A
­ X may be n% (where m!=n) faster than Y on application B
­ Y may be k% faster than X on application C

Which computer is faster and by how much?
­ depends on which application(s) you care about
­ if you care about several applications, then it also

depends their relative importance
Many ways to summarize performance comparison
into a single quantitative measure
­ some may even be meaningful for exactly your purpose
­ but you have to know when to do what
­ when in doubt, present the complete story

CMU 18-447
S’09 L7-14
© 2009
J. C. Hoe

Arithmetic Mean

Suppose you workload is applications A0,A1,..An-1

Arithmetic mean of the application run time ispp

­ comparing AM is the same as comparing total run-time
­ caveat: longer applications have greater contribution

than shorter applications
If AMX/AMY=n then Y is n times faster than X

∑
−

=

1

0

1 n

i
Ai

Time
n

If AMX/AMY n then Y is n times faster than X
True: A0,…An-1 are run equal number of times always
False: if some applications are run much more frequently

then others (especially problematic if the most frequent
applications are also much shorter than the rest)

CMU 18-447
S’09 L7-15
© 2009
J. C. Hoe

Weighted Arithmetic Mean
Introduce weighting factors, w0,w1…wn-1 where 1=
wi is the number of times Ai runs relative to total
number of times any program in the workload is run

∑
−

=

1

0

n

i
iw

y p g
Weighted arithmetic mean of the run time is

If WAMX/WAMY=n then Y is n times faster than X
on a workload characterized by w0,w1…wn-1

∑
−

=

⋅
1

0

n

i
Ai i

Timew

But wi isn’t fixed and isn’t easy to come by, how
about

or
Yes, you get a number at the end, but what does it

mean?

∑
−

=

1

0

1 n

i YonA

XonA

i

i

Time

Time

n
n

n

i
YonA

XonA

i

i

Time

Time
∏ −

=

1

0

CMU 18-447
S’09 L7-16
© 2009
J. C. Hoe

Normalized Performance
Suppose
­ A0 takes 1s on X; 10s on Y; and 20s on Z
­ A1 takes 1000s on X; 100s on Y; and 20s on ZA1 takes 1000s on X; 100s on Y; and 20s on Z
­ A0+A1 = 1001s on X; 110s on Y; and 40s on Z

normalized to X normalized to Y normalized to Z
X Y Z X Y Z X Y Z

TimeA0 1 10 20 0.1 1 2 0.05 0.5 1
Tim 1 0 1 0 02 10 1 0 2 50 5 1TimeA1 1 0.1 0.02 10 1 0.2 50 5 1

AM of ratio 1 5.05 10.01 5.05 1 1.1 25.03 2.75 1
GM of ratio 1 1.0 0.63 1.0 1 0.63 1.58 1.58 1

[Computer Architecture: A quantitative approach. Hennessy and Patterson]

CMU 18-447
S’09 L7-17
© 2009
J. C. Hoe

Harmonic Mean

Don’t take arithmetic mean of rates (e.g.
throughput)
­ e.g. 30 mph for first 10 miles, 90 mph for next 10 miles,

the average speed is not (30 + 90)/2 = 60 mph!
To compute average rate
1. expand fully

average speed = total distance / total time
= 20 / (10/30 + 10/90) = 45 mph

2 h i 2. harmonic mean

HM is just a short-cut for doing the fully expanded
calculation when averaging rates

∑
−

=

=
1

0

1n

i iRate
nHM ∑

−

=

=
1

0

1
n

i i

i

Rate
wWHM

CMU 18-447
S’09 L7-18
© 2009
J. C. Hoe

Standard Benchmarks
Why standard benchmarks?
­ Everyone cares about different applications (different

aspects of performance)
­ Your application may not be available for the machine you

want to study
SPEC Benchmarks (www.spec.org)
­ Standard Performance Evaluation Corporation
­ a set of “realistic”, general-purpose, public-domain

applications chosen by a multi-industry committee
updated every few year to reflect changes in usage and ­ updated every few year to reflect changes in usage and
technology

­ a sense of objectivity and predictive power
­ everyone knows it is not perfect, but at least everyone

plays/cheats by the same rules
Other similar industry entities also exist for other
application domains (server, embedded, etc)

CMU 18-447
S’09 L7-19
© 2009
J. C. HoeSPEC CPU Benchmark Suites

(http://www.spec.org/cpu2006)

CINT2006 (C unless otherwise noted)
perlbench (prog lang), bzip2 (compress), gcc (compile),mcf
(optimize), gobmk (go), hmmer (gene seq. search), sjeng
(chess) libquantum (physics sim) h264ref (video compress) (chess), libquantum (physics sim.), h264ref (video compress),
omnetpp (C++, discrete event sim.), astar (C++, path-finding),
xalancbmk (C++, XML)

CFP2006 (F77/F90 unless otherwise noted)
bwaves (CFD), gamess (quantum chem), milc (C, QCD), zeusmp
(CFD), gromacs (C+Fortran, molecular dyn), cactusADM
(C+Fortran, relativity), leslie3d (CFD), namd (C++, molecular
d) d lII (C fi it l t) l (C Li dyn), dealII (C++, finite element), soplex (C++, Linear
Programming), povray (C++, Ray-trace), calculix (C+Fortran,
Finite element), GemsFDTD (E&M), tonto (quantum chem), lbm
(C, CFD), wrf (C+Fortran, weather), sphinx3 (C, speech recog)

Reports geometric mean of normalized performance
relative to a 296MHz reference Sun UltraSparc II

CMU 18-447
S’09 L7-20
© 2009
J. C. Hoe

Performance Summary

There is no one-size-fits-all methodology
­ be sure you understand what you want to measure
­ be sure you understand what you measured
­ be sure what you report is accurate and representative
­ be ready to come clean with raw data

No one believes your numbers anyway
­ be clear about what effect you are trying to measure
­ be clear about what and how you actually measured
­ be clear about how performance is summarized and

represented

If the results really matter, people will want to
check it for themselves

