
CS224W Homework 2

Due: November 4, 2024

1 Node Embeddings with TransE [21 points]

While many real world systems are effectively modeled as graphs, graphs can
be a cumbersome format for certain downstream applications, such as machine
learning models. It is often useful to represent each node of a graph as a vector in
a continuous low dimensional space. The goal is to preserve information about
the structure of the graph in the vectors assigned to each node. For instance,
the spectral embedding preserved structure in the sense that nodes connected
by an edge were usually close together in the (one-dimensional) embedding x.

Multi-relational graphs are graphs with multiple types of edges. They are in-
credibly useful for representing structured information, as in knowledge graphs.
There may be one node representing “Washington, DC” and another represent-
ing “United States”, and an edge between them with the type “Is capital of”.
In order to create an embedding for this type of graph, we need to capture
information about not just which edges exist, but what the types of those edges
are. In this problem, we will explore a particular algorithm designed to learn
node embeddings for multi-relational graphs.

The algorithm we will look at is TransE.1 We will first introduce some no-
tation used in the paper describing this algorithm. We’ll let a multi-relational
graph G = (E,S, L) consist of the set of entities E (i.e., nodes), a set of edges S,
and a set of possible relationships L. The set S consists of triples (h, l, t), where
h ∈ E is the head or source-node, l ∈ L is the relationship, and t ∈ E is the tail
or destination-node. As a node embedding, TransE tries to learn embeddings
of each entity e ∈ E into Rk (k-dimensional vectors), which we will notate by
e. The main innovation of TransE is that each relationship ℓ is also embedded
as a vector ℓ ∈ Rk, such that the difference between the embeddings of entities
linked via the relationship ℓ is approximately ℓ. That is, if (h, ℓ, t) ∈ S, TransE
tries to ensure that h+ ℓ ≈ t. Simultanesouly, TransE tries to make sure that
h+ ℓ ̸≈ t if the edge (h, ℓ, t) does not exist.

1See the 2013 NeurIPS paper by Bordes et al: https://papers.nips.cc/paper/

5071-translating-embeddings-formodeling-multi-relational-data.pdf

1

https://papers.nips.cc/paper/5071-translating-embeddings-for modeling-multi-relational-data.pdf
https://papers.nips.cc/paper/5071-translating-embeddings-for modeling-multi-relational-data.pdf

Note on notation: we will use unbolded letters e, ℓ, etc. to denote the entities
and relationships in the graph, and bold letters e, ℓ, etc., to denote their cor-
responding embeddings. TransE accomplishes this by minimizing the following
loss:

L =
∑

(h,ℓ,t)∈S

 ∑
(h′,ℓ,t′)∈S′

(h,ℓ,t)

[γ + d(h+ ℓ, t)− d (h′ + ℓ, t′)]+

 (1)

Here (h′, ℓ, t′) are ”corrupted” triplets, chosen from the set S′
(h,ℓ,t) of corruptions

of (h, ℓ, t), which are all triples where either h or t (but not both) is replaced by
a random entity, and ℓ remains the same as the one in the original triplets.

S′
(h,ℓ,t) = {(h′, ℓ, t) | h′ ∈ E} ∪ {(h, ℓ, t′) | t′ ∈ E}

Additionally, γ > 0 is a fixed scalar called the margin, the function d(·, ·) is the
Euclidean distance, and [·]+ is the positive part function (defined as max(0, ·)).
Finally, TransE restricts all the entity embeddings to have length 1 :
∥e∥2 = 1 for every e ∈ E.
For reference, here is the TransE algorithm, as described in the original paper
on page 3:

1.1 Simplified Objective [3 points]

Say we were intent on using a simpler loss function. Our objective function (1)
includes a term maximizing the distance between h′ + ℓ and t′. If we instead
simplified the objective, and just tried to minimize

Lsimple =
∑

(h,ℓ,t)∈S

d(h+ ℓ, t), (2)

2

we would obtain a useless embedding. Give an example of a simple graph
and corresponding embeddings which will minimize the new objective function
(2) all the way to zero, but still give a completely useless embedding.
Hint: Your graph should be non-trivial, i.e., it should include at least two nodes
and at least one edge. Assume the embeddings are in 2 dimensions, i.e., k = 2.
What happens if ℓ = 0?

⋆ Solution ⋆

1.2 Utility of γ [5 points]

We are interested in understanding what the margin term γ accomplishes. If
we removed the margin term γ from our loss, and instead optimized

Lno margin =
∑

(h,ℓ,t)∈S

∑
(h′,ℓt′)∈S′

(h,ℓ,t)

[d(h+ ℓ, t)− d (h′ + ℓ, t′)]+ , (3)

it turns out that we would again obtain a useless embedding. Give an example
of a simple graph and corresponding embeddings which will minimize the new
objective function (3) all the way to zero, but still give a completely useless
embedding. By useless, we mean that in your example, you cannot tell just
from the embeddings whether two nodes are linked by a particular relation
(Note: your graph should be non-trivial, i.e., it should include at least two
nodes and at least one edge. Assume the embeddings are in 2 dimensions, i.e.,
k = 2.)

⋆ Solution ⋆

1.3 Normalizing the embeddings [5 points]

Recall that TransE normalizes every entity embedding to have unit length (see
line 5 of the algorithm). The quality of our embeddings would be much worse if
we did not have this step. To understand why, imagine running the algorithm
with line 5 omitted. What could the algorithm do to trivially minimize the loss
in this case? What would the embeddings it generates look like?

⋆ Solution ⋆

1.4 Expressiveness of TransE embeddings [8 points]

Give an example of a simple graph for which no perfect embedding exists, i.e.,
no embedding perfectly satisfies u + ℓ = v for all (u, ℓ, v) ∈ S and u + ℓ ̸=
v for (u, ℓ, v) /∈ S, for any choice of entity embeddings (e for e ∈ E) and
relationship embeddings (ℓ for ℓ ∈ L). Explain why this graph has no perfect
embedding in this system, and what that means about the expressiveness of

3

TransE embeddings. As before, assume the embeddings are in 2 dimensions
(k = 2).
Hint: By expressiveness of TransE embeddings, we want you to talk about
which type of relationships TransE can/cannot model with an example. (Note
that the condition for this question is slightly different from that for Question
2.1 and what we ask you to answer is different as well).

⋆ Solution ⋆

2 Expressive Power of Knowledge Graph Em-
beddings [10 points]

TransE is a common method for learning representations of entities and relations
in a knowledge graph. Given a triplet (h, ℓ, t), where entities embedded as h
and t are related by a relation embedded as ℓ, TransE trains entity and relation
embeddings to make h + ℓ close to t. There are some common patterns that
relations form:

• Symmetry: A is married to B, and B is married to A.

• Inverse: A is teacher of B, and B is student of A. Note that teacher and
student are 2 different relations and have their own embeddings.

• Composition: A is son of B;C is sister of B, then C is aunt of A. Again
note that son, sister, and aunt are 3 different relations and have their own
embeddings.

2.1 TransE Modeling [3 points]

For each of the above relational patterns, can TransE model it perfectly, such
that h + ℓ = t for all relations? Explain why or why not. Note that here 0
embeddings for relation are undesirable since that means two entities related by
that relation are identical and not distinguishable.

⋆ Solution ⋆

2.2 RotatE Modeling [3 points]

Consider a new model, RotatE. Instead of training embeddings such that h+ℓ ≈
t, we train embeddings such that h ◦ ℓ ≈ t. Here ◦ means rotation. You
can think of h as a vector of dimension 2d, representing d 2D points. ℓ is
a d-dimensional vector specifying rotation angles. When applying ◦, For all
i ∈ 0 . . . d − 1, (h2i, h2i+1) is rotated clockwise by li. Similar to TransE, the
entity embeddings are also normalized to L2 norm 1. Can RotatE model the
above 3 relation patterns perfectly? Why or why not?

4

⋆ Solution ⋆

2.3 Failure Cases [4 points]

Give an example of a graph that RotatE cannot model. Can TransE model this
graph? Assume that relation embeddings cannot be 0 in either model.

⋆ Solution ⋆

3 Queries on Knowledge Graphs [14 points]

Knowledge graphs (KGs) can encode a wealth of information about the world.
Beyond representing the information using knowledge graphs, we can often de-
rive previously unknown insights about entities and relations in the graphs. In
this question, we will explore different approaches for reasoning over knowl-
edge graphs. Recall from that lecture that we are interested in predicting tail

nodes given (head, relation). We will use the same formulation throughout
this question.

3.1 Path Queries on Complete KGs [3 points]

Consider the biomedicine knowledge graph from lecture. Assume the question
of interest is: “What proteins are associated with diseases treated by Arim-
idex?” Write the question in query form (eg. (e:AnchorEntity, (r:Relation)))
and find the answer(s) to the query. Partial credit will be rewarded to correct
intermediate steps.

5

⋆ Solution ⋆

3.2 Conjunctive Queries on Complete KGs [1 point]

Consider the same biomedicine knowledge graph from before. Write a conjunc-
tive query to which BIRC2 is the only answer using drugs as anchor entities. If
such a query doesn’t exist, provide a one-sentence explanation.

⋆ Solution ⋆

3.3 Incomplete KGs [2 points]

A major issue with direct traversals on knowledge graphs is that they are usually
incomplete in reality. One solution is to encode entities, relations, and queries
in an embedding space that meaningfully organizes information. We would
then be able to impute missing relation links by considering all nearby points
of the query embedding as answers to the query. From lecture, we learned that
TransE embeddings can be used for this. Can you come up with a way to adopt
DistMult embeddings, which uses bilinear modeling, for answering path queries?
If yes, describe in one or two sentences what can be modified from the TransE
application. If no, provide a one-sentence explanation.

⋆ Solution ⋆

3.4 Query2box [8 points]

Query2box is an effective approach for answering complex conjunctive queries.
Consider the following 2-dimensional embedding space. Assume that there are
7 entities A,B,C,D,E, F,G ∈ V , whose embeddings are shown below. There
are 3 relations: R1, R2, R3. R1 ∈ R shifts the center of a box by (0.25, 2) and
increases the width and height of a box by (0.5, 2). R2 shifts the center of a
box by (1, 0) and increases the width and height of a box by (1, 0). R3 shifts
the center of a box by (−0.75, 1) and increases the width and height of a box
by (1.5, 3).

Use the Query2box projection operator to find the answers to the conjunctive
query: ((e:A, (r:R1, r:R2), (e:C, (r:R3)). Show your work. Partial credit will
be rewarded to correct intermediate steps.

Note: Shifting by a negative value means moving towards the left or bottom.
Increasing the width and height by an amount means adding that amount in
absolute value, not multiplying that amount as a factor. Assume that each
path query starts with a box centered at the anchor entity with zero width and
height.

6

⋆ Solution ⋆

4 Honor Code [0 points]

(X) I have read and understood Stanford Honor Code before I submitted my
work.

**Collaboration: Write down the names & SUNetIDs of students you col-
laborated with on Homework 2 (None if you didn’t).**

Note: Read our website on our policy about collaboration!

7

	Node Embeddings with TransE [21 points]
	Simplified Objective [3 points]
	Utility of [5 points]
	 Normalizing the embeddings [5 points]
	Expressiveness of TransE embeddings [8 points]

	Expressive Power of Knowledge Graph Embeddings [10 points]
	TransE Modeling [3 points]
	RotatE Modeling [3 points]
	Failure Cases [4 points]

	Queries on Knowledge Graphs [14 points]
	Path Queries on Complete KGs [3 points]
	Conjunctive Queries on Complete KGs [1 point]
	Incomplete KGs [2 points]
	Query2box [8 points]

	Honor Code [0 points]

