
10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 1

Notes on Distributed Mutual Exclusion
15-440, Fall 2012
Carnegie Mellon University
Randal E. Bryant

Reading: Tannenbaum, Sect. 6.3

Goal:

Maintain mutual exclusion among set of n distributed processes. Each
process executes loop of form:

while true:
 Perform local operations
 Acquire()
 Execute critical section
 Release()

Whereas multithreaded systems can use shared memory, we assume that
processes can only coordinate message passing.

Terminology: Define a "cycle" as one round of the protocol, where some
process acquires the lock, completes its critical section and then
releases it.

Requirements:

1. Safety. At most one process holds the lock at a time

2. Fairness. Any process that makes a request must be granted lock
 A. Implies that system must be deadlock-free
 B. Assumes that no process will hold onto a lock indefinitely
 C. Eventual fairness: Waiting process will not be excluded forever
 D. Bounded fairness: Waiting process will get lock within some
 bounded number of cycles (typically n)

Other possible goals
 1. Low message overhead
 2. No bottlenecks
 3. Tolerate out-of-order messages
 4. Allow processes to join protocol or to drop out
 5. Tolerate failed processes
 6. Tolerate dropped messages

For today, we will only consider goals 1-3. I.e., assume:

* Total number of processes is fixed at n
* No process fails or misbehaves
* Communication never fails, but messages may be delivered out of order.

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 2

Scheme 1: Centralized Mutex Server

Assume there is a single server that acts as a lock manager. It
maintains queue Q containing lock requests that have not yet been
granted.

Operation on process i

Acquire:
 Send (Request, i) to manager
 Wait for reply

Release:
 Send (Release) to manager

Operation at server

while true:
 m = Receive()
 If m == (Request, i):
 if empty(Q):
 Send (Grant) to i
 else:
 Add i to Q
 If m == (Release) && !empty(Q):
 Remove ID j from Q
 Send (Grant) to j

Correctness:
 * Clearly safe
 * Fairness depends on queuing policy. E.g., if always gave
 priority to lowest process ID, then processes 1 & 2 could
 keep making requests & thereby exclude process 3. If use
 round-robin, or FIFO policy, then would guarantee response
 within n cycles.

Performance:
 * 3 messages per cycle (1 request, 1 grant, 1 release)
 * Lock server creates bottleneck

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 3

Ricart & Agrawala’s algorithm (1981)

Relies on Lamport totally ordered clocks, having the following properties:

1. For any events e, e’ such that e --> e’ (causality ordering), T(e) < T(e’)

2. For any distinct events e, e’, T(e) != T(e’).

Notation: Ni = {1, 2, ..., i-1, i+1, ..., n} (n is the number of processes)

General idea:

When want to enter C.S., node i sends time-stamped request to all
other nodes. These other nodes reply (eventually). When i receives
n-1 replies, then can enter C.S.

Trick: Node j having earlier request doesn’t reply to i until after it
has completed its C.S.

Message types:
 (Request, i, T): Process i requests lock with timestamp T
 (Reply, j): Process j responds to some request for lock

For each node i, maintain following values:

 Ti():
 Function that returns value of local Lamport clock

 should_defer: Boolean
 Set when process i should defer replies to requests

 Tr:
 Time stamp of pending local request

 R: Subset of Ni
 Set of processes from which have received reply

 D: Subset of Ni
 Set of processes for which i has deferred the reply to their requests

 lock(), unlock(): A local mutex lock, to keep the two threads from interfering
 with each other

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 4

Process i consists of two threads. One servicing the application, and
one monitoring the network.

Application thread:

 Request() // Request global mutex
 Wait for Notification // Wait until notified by network thread
 Critical Section // Operate in exclusive mode
 Release() // Release mutex

Application Functions:

Request():
 lock() // Don’t want app & network functions to step on each oth
er
 Tr = Ti() // Get time stamp
 R = {}
 D = {}
 should_defer = true
 Send (Request, i, Tr) to each j in Ni
 unlock()

Release():
 lock()
 should_defer = false
 Send (Reply, i) to each j in D
 unlock()

Network Functions:

while true:
 m = Receive()
 lock()
 if m == (Request, j, T):
 if should_defer && Tr < T:
 D = D U {j} // Defer response to j
 else
 Send (Reply, i) to j
 else if m == (Reply, j):
 R = R U {j}
 if R == Ni
 Notify application
 unlock()
Performance:

Define a "cycle" to be a complete round of the protocol with one
process i entering its critical section and then exiting.

Each cycle involves 2(n-1) messages:

 n-1 requests by i
 n-1 replies to i

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 5

Correctness:

Mutual exclusion: Cannot have two nodes in their critical sections at the same time

Look at nodes A & B. Suppose both are allowed to be in their critical
sections at same time.

* A must have sent message (Request, A, Ta) & gotten reply (Reply, A).
* B must have sent message (Request, B, Tb) & gotten reply (Reply, B).

Case 1: One received request before other sent request.

 E.g., B received (Request, A, Ta) before sending (Request, B, Tb).
 Then would have Ta < Tb. A would not have replied until after
 leaving its C.S.

Case 2: Both sent requests before receiving others request.

 But still, Ta & Tb must be ordered. Suppose Ta < Tb. Then A
 would not sent reply to B until after leaving its C.S.

Deadlock Free: Cannot have cycle where each node waiting for some other

Consider two-node case: Nodes A & B are causing each other to
deadlock. This would result if A deferred reply to B & B deferred
reply to A, but this would require both Ta < Tb & Tb < Ta.

For general case, would have set of nodes A, B, C, ..., Z, such that
A is holding deferred reply to B, B to C, ... Y to Z, and Z to A.
This would require Ta < Tb < ... < Tz < Ta, which is not possible.

Starvation Free: If node makes request, it will be granted eventually

Claim: If node A makes a request with time stamp Ta, then eventually,
all nodes will have their local clocks > Ta.

Justification: From the request onward, every message A sends will
have time stamp > Ta. All nodes will update their local clocks upon
receiving those messages.

So, eventually, A’s request will have a lower time stamp than any
other node’s request, and it will be granted.

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 6

Ricart & Agrawala Example

Processes 1, 2, 3. Create totally ordered clocks by having process ID
compute timestamp of form T(e) = 10*L(e), where L(e) is a regular
Lamport clock.

Initial timestamps-- P1: 421, P2: 112, P3: 143

Action types:
 R m: Receive message m
 B m: Broadcast message m to all other processes
 S m to j: Send message m to process j

Process T1 T2 T3 Action
 421 112 143
3 153 B (Request, 3, 153)
2 162 R (Request, 3, 153)
1 431 R (Request, 3, 153)
1 441 S (Reply, 1) to 3
2 172 S (Reply, 2) to 3
3 453 R (Reply, 1)
3 463 R (Reply, 2)
3 473 Enter critical section
1 451 B (Request, 1, 451)
2 182 B (Request, 2, 182)
3 483 R (Request, 1, 451)
3 493 R (Request, 2, 182)
1 461 R (Request, 2, 182)
2 462 R (Request, 1, 451) # 2 has D = {1}
1 471 S (Reply, 1) to 2 # 2 has higher priority
2 482 R (Reply, 1)
3 503 S (Reply, 3) to 1 # Release lock
3 513 S (Reply, 3) to 2
1 511 R (Reply, 3) # 1 has R = {2}
2 522 R (Reply, 3) # 2 has R = {}
2 532 Enter critical section
2 542 S (Reply, 2) to 1 # Release lock
1 551 R (Reply, 2) # 1 has R = {}
1 561 Enter critical section
...

Overall flow: P1 and P2 compete for lock after it is released by P3.
P1’s request has timestamp 451, while P2’s request has timestamp 182.
P2 defers reply to P1, but P1 replies to P2 immediately. This allows
P2 to proceed ahead of P1.

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 7

Lamport’s Distributed Mutual Exclusion (1978)

Also relies on Lamport totally ordered clocks, having the following properties:

1. For any events e, e’ such that e --> e’ (causality ordering), T(e) < T(e’)

2. For any distinct events e, e’, T(e) != T(e’).

More complex than R&A:

* 3 rounds of messages.
 - Send Reply message before entering C.S.
 - Send Release message after enterining C.S.
* Each node must maintain local priority queue, orderd by time stamp.

Interesting demonstration of maintaining replica of data any all locations.

Initial version (1978) assumed messages received in same order as sent
("FIFO ordering"). Our version doesn’t require this assumption. Only
assumes that any message that is sent is eventually received, and that
messages are never corrupted.

Message types:
 (Request, i, T): Process i requests lock with timestamp T
 (Reply, j): Process j responds to some request for lock
 (Release): Release lock

For each node i, maintain following values:

 Ti():
 Function that returns value of local Lamport clock

 waiting: Boolean
 Set when process i wants lock

 Q:
 Priority queue with entries of form (j, T), indicating that process j
 has a request with timestamp T. Ordered so that entry with lowest
 timestamp at head.

 Tr:
 Time stamp of pending local request

 R: Subset of Ni
 Set of processes from which i has received reply for its request

 D: Subset of Ni
 Set of processes for which i has deferred the reply to their requests

 lock(), unlock():
 A local mutex lock to synchronize the two threads.

Process i consists of two threads. One servicing the application, and
one monitoring the network.

Application thread:

 Request() // Request global mutex
 Wait for Notification // Wait until notified by network thread
 Critical Section // Operate in exclusive mode
 Release() // Release mutex

 Application Functions:

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 8

Request():
 lock()
 Tr = Ti() // Get time stamp
 R = {}
 D = {}
 Send (Request, i, Tr) to each j in Ni
 Add (i, Tr) to Q
 waiting = true
 unlock()

Release():
 lock()
 Send (Release) to each j in Ni
 Pop top element from Q
 unlock()

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 9

Network Function

while true:
 m = Receive()
 lock()
 if m ==(Request, j, T):
 Add (j, T) to Q
 if waiting && j !in R && Tr < T:
 D = D U {j} // Defer response to j
 else
 Send (Reply, i) to j
 else if m == (Reply, j):
 R = R U {j}
 if j in D:
 D = D - {j}
 Send (Reply, i) to j
 Check()
 else if m == (Release)
 Pop top element from Q
 Check()
 unlock()

Check(): // Check to see if i is now enabled
 if R == Ni && (i, Tr) at front of queue:
 waiting = false
 Notify application

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 10

Why does Lamport’s algorithm work?

Key idea:

When process x generates request with time stamp Tx, and it has
received replies from all y in Nx, then its Q contains all requests
with time stamps <= Tx.

Expressed as follows:

Rule: If x receives message (Reply, y), this indicates
that one of the following must hold:
 1. y does not have a pending event with time stamp Ty < Tx, or
 2. x already has an entry of the form (y, Ty) in Q.

Let’s see how this rule gets implemented. When node i receives
(Request, j, T), it does either an "immediate" reply or a "deferred"
reply.

IMMEDIATE REPLY. Happens when any of the following conditions hold:
 A. !waiting
 B. j in R:
 C. Tr > T

This will cause j to receive the message (Reply, i). Letting x = j
and y = i, we can categorize the three cases as follows:

 A. !waiting
 Node i does not want access to critical section
 Rule 1 applies: i does not have a pending event

 B. j in R:
 Node j already replied to i’s request
 Rule 2 applies: j has an entry (i, Tr).

 C. Tr > T
 Node j’s request has an earlier timestamp.
 Rule 1 applies: i has a pending event, but its time stamp is
 later than Tr.

DEFERRED REPLY. Occurs after node i receives (Reply, j). That
reply is an acknowledgement that j has received i’s request, and so
Rule 2 applies.

The deferred reply is the key trick for dealing with out of order
messages. By holding back its reply, i will not let j "jump the gun",
acting on its own request even though i has an earlier request.

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 11

Performance issues:

Define a "cycle" to be a complete round of the protocol with one
process i entering its critical section and then exiting.

We can see this cycle would involve 3(n-1) messages as follows:

1. Process i sending n-1 request messages
2. Process i receiving n-1 reply messages
3. Process i sending n-1 release messages.

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 12

Alternative organization: Token ring

Idea:

Number processes 0, 1, ..., n-1.

Define next(i) = i + 1 mod n

Processes are logically connected in ring, so that process i can send a
message to next(i).

Run two threads for each process, one to service application and one
to manage network connection.

Each process i maintains two local Boolean variables:

 havetoken:
 Initialized to true for process 0 and to false for all others.

 waiting:
 For application thread to communicate network thread.

Would also need mutex to synchronize changes to these variables, but
we will omit these details.

Application functions for process i:

Request():
 if havetoken:
 Notify application
 else
 waiting = true

Release():
 havetoken = false
 Send (OK) to next(i)

Network functions for process i:
 // Starting up
 if havetoken: // True only for process 0
 Send (OK) to next(i)
 havetoken = false
 // Regular operation
 while true:
 When receive (OK):
 if waiting:
 havetoken = true
 Notify application
 else
 Send (OK) to next(i)

Correctness:
 * Clearly safe: Only one process can hold token
 * Fairness: Will pass around ring at most once before
 getting access.

Performance:
 Each cycle requires between 0 & n-1 messages
 Latency of protocol between 0 & n-1

10-mutual-exclusion.txt Wed Nov 28 21:45:02 2012 13

Final observations

1. Lamport algorithm demonstrates how distributed processes can
maintain consistent replicas of a data structure (the priority queue).

2. Lamport & Ricart & Agrawala’s algorithms demonstrate utility of
logical clocks.

3. Centralized & ring based algorithms much lower message counts

4. None of these algorithms can tolerate failed processes or dropped
messages.

