10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 1

Notes on Distributed Mutual Exclusion
15- 440, Fall 2012

Carnegie Mellon University

Randal E. Bryant

Readi ng: Tannenbaum Sect. 6.3
Goal

Mai ntai n nmut ual excl usi on anong set of n distributed processes. Each
process executes |oop of form

while true:
Perform | ocal operations
Acquire()
Execute critical section
Rel ease()

Whereas nultithreaded systens can use shared nenory, we assune that
processes can only coordi nhate nessage passi ng.

Term nol ogy: Define a "cycle" as one round of the protocol, where sone
process acquires the | ock, conmpletes its critical section and then
rel eases it.

Requi rement s
1. Safety. At nost one process holds the lock at a tine

2. Fairness. Any process that makes a request nust be granted | ock
A Inplies that system nust be deadl ock-free
B. Assumes that no process will hold onto a lock indefinitely
C. Eventual fairness: Waiting process will not be excluded forever
D. Bounded fairness: Waiting process will get lock wthin sone
bounded nunber of cycles (typically n)

O her possible goals

Low nessage over head

No bottl enecks

Tol erat e out-of -order nessages

Al'l ow processes to join protocol or to drop out
Tol erate fail ed processes

Tol erat e dropped nessages

ourLNE

For today, we will only consider goals 1-3. 1.e., assune:

* Total nunber of processes is fixed at n
* No process fails or msbehaves
* Conmmuni cati on never fails, but nessages may be delivered out of order



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 2

Schene 1. Centralized Miutex Server

Assune there is a single server that acts as a | ock nanager. It
mai nt ai ns queue Q containing | ock requests that have not yet been
grant ed.

Qperation on process i

Acqui re:
Send (Request, i) to manager
VWait for reply

Rel ease:
Send (Rel ease) to manager

Qperation at server

while true:
m = Recei ve()
If m== (Request, i):
if enpty(Q:
Send (Grant) to i
el se:
Add i to Q
If m== (Release) && 'enpty(Q:
Remove IDj fromQ
Send (Grant) to j

Corr ect ness:
* Clearly safe

* Fai rness depends on queuing policy. E.g., if always gave
priority to | owest process ID, then processes 1 & 2 could
keep maki ng requests & thereby exclude process 3. |If use

round-robin, or FIFO policy, then woul d guarantee response
within n cycles.

Per f or mance:
* 3 messages per cycle (1 request, 1 grant, 1 release)
* Lock server creates bottleneck



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 3

Ricart & Agrawal a’'s algorithm (1981)

Relies on Lanport totally ordered cl ocks, having the follow ng properties:

1. For any events e, e such that e --> e’ (causality ordering), T(e) < T(e')
2. For any distinct events e, e, T(e) != T(e').

Notation: N = {1, 2, ..., i-1, i+1, ..., n} (n is the nunber of processes)
General idea:

When want to enter C. S., node i sends tine-stanped request to al

ot her nodes. These other nodes reply (eventually). Wen i receives

n-1 replies, then can enter C S.

Trick: Node j having earlier request doesn’t reply to i until after it
has conpleted its C S

Message types:

(Request, i, T): Process i requests lock with timestanmp T
(Reply, j): Process j responds to some request for |ock
For each node i, nmmintain follow ng val ues:

Ti():
Function that returns value of |ocal Lanport clock

shoul d_defer: Bool ean
Set when process i should defer replies to requests

Tr:
Ti me stanp of pending |ocal request

R Subset of Ni
Set of processes from which have received reply

D. Subset of Ni
Set of processes for which i has deferred the reply to their requests

l ock(), unlock(): A local nutex |lock, to keep the two threads frominterfering
with each other



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 4

Process i consists of two threads. One servicing the application, and
one nonitoring the network.

Application thread:

Request () /1 Request gl obal nutex

Wait for Notification // Wait until notified by network thread
Critical Section /1l Operate in exclusive node

Rel ease() /1 Rel ease nut ex

Application Functions:

Request ():

I ock() /1 Don’t want app & network functions to step on each oth
er

Tr = Ti() /1 Get time stanp

R={}

D= {}

shoul d_defer = true

Send (Request, i, Tr) to each j in N

unl ock()

Rel ease():
I ock()
shoul d_defer = fal se
Send (Reply, i) to eachj inD
unl ock()

Net wor k Functi ons:

while true:
m = Recei ve()
I ock()
if m== (Request, j, T):
if should defer && Tr < T:
D=DU({j} /1 Defer response to j
el se
Send (Reply, i) toj
else if m== (Reply, j):
R=RU{j}
if R==Ni
Notify application
unl ock()
Per f or mance:

Define a "cycle" to be a conplete round of the protocol wth one
process i entering its critical section and then exiting.

Each cycle involves 2(n-1) nessages:

n-1 requests by i
n-1 replies to i



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 5

Correct ness:

Mut ual excl usion: Cannot have two nodes in their critical sections at the sane tine

Look at nodes A & B. Suppose both are allowed to be in their critica
sections at sane tine.

* A nmust have sent nmessage (Request, A, Ta) & gotten reply (Reply, A).
* B nust have sent message (Request, B, Th) & gotten reply (Reply, B)

Case 1: One received request before other sent request.
E.g., B received (Request, A Ta) before sending (Request, B, Th).
Then woul d have Ta < Tb. A would not have replied until after
leaving its C. S.

Case 2: Both sent requests before receiving others request.
But still, Ta & Tb nust be ordered. Suppose Ta < Th. Then A
woul d not sent reply to B until after leaving its C. S

Deadl ock Free: Cannot have cycl e where each node waiting for sone other

Consi der two-node case: Nodes A & B are causing each other to

deadl ock. This would result if A deferred reply to B & B deferred
reply to A but this would require both Ta < Tb & Tb < Ta.

For general case, would have set of nodes A, B, C, ..., Z, such that
A is holding deferred reply to B, Bto C, ... Yto Z and Zto A
This would require Ta < Tbh < ... < Tz < Ta, which is not possible.

Starvation Free: |If node nmakes request, it will be granted eventually

Caim If node A nakes a request with tine stanp Ta, then eventually,
all nodes will have their local clocks > Ta

Justification: Fromthe request onward, every nessage A sends will
have tine stanp > Ta. All nodes will update their |ocal clocks upon
recei ving those nessages.

So, eventually, A s request will have a lower tine stanp than any
ot her node’s request, and it will be granted.



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 6

Ri cart & Agrawal a Exanpl e

Processes 1, 2, 3. Create totally ordered clocks by having process ID
conpute tinmestanp of formT(e) = 10*L(e), where L(e) is a regular
Lanmport cl ock.
Initial tinestanps-- P1: 421, P2: 112, P3: 143
Action types:
R m Receive nessage m
B m Broadcast nmessage mto all other processes
S mto j: Send nessage mto process |
Process T1 T2 T3 Action
421 112 143
3 153 B (Request, 3, 153)
2 162 R (Request, 3, 153)
1 431 R (Request, 3, 153)
1 441 S (Reply, 1) to 3
2 172 S (Reply, 2) to 3
3 453 R (Reply, 1)
3 463 R (Reply, 2)
3 473 Enter critical section
1 451 B (Request, 1, 451)
2 182 B (Request, 2, 182)
3 483 R (Request, 1, 451)
3 493 R (Request, 2, 182)
1 461 R (Request, 2, 182)
2 462 R (Request, 1, 451) # 2 has D = {1}
1 471 S (Reply, 1) to 2 # 2 has higher priority
2 482 R (Reply, 1)
3 503 S (Reply, 3) to 1 # Rel ease | ock
3 513 S (Reply, 3) to 2
1 511 R (Reply, 3) # 1 has R = {2}
2 522 R (Reply, 3) # 2 has R = {}
2 532 Enter critical section
2 542 S (Reply, 2) to 1 # Rel ease | ock
1 551 R (Reply, 2) # 1 has R = {}
1 561 Enter critical section

Overall flow. Pl and P2 conpete for lock after it is released by P3.

P1l's request has tinestanp 451, while P2's request has tinmestanmp 182.
P2 defers reply to P1, but Pl replies to P2 inmediately. This allows

P2 to proceed ahead of P1



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 7

Lanmport’s Distributed Mutual Exclusion (1978)
Al'so relies on Lanport totally ordered clocks, having the followi ng properties:
1. For any events e, e such that e --> e’ (causality ordering), T(e) < T(e')
2. For any distinct events e, e, T(e) != T(e').
More conpl ex than R&A:
* 3 rounds of nessages.

- Send Reply nessage before entering C S.

- Send Rel ease nessage after enterining C S.
* Each node must maintain local priority queue, orderd by tine stanp.
Interesting denmonstration of maintaining replica of data any all |ocations.
Initial version (1978) assuned nessages received in sanme order as sent
("FIFO ordering"). Qur version doesn't require this assunption. Only
assunes that any nessage that is sent is eventually received, and that
nessages are never corrupted.

Message types:

(Request, i, T): Process i requests lock with tinmestanp T
(Reply, j): Process j responds to some request for |ock
(Rel ease): Rel ease | ock

For each node i, mmintain follow ng val ues:

Ti():
Function that returns value of |ocal Lanport clock

wai ti ng: Bool ean
Set when process i wants |ock

Q

Priority queue with entries of form(j, T), indicating that process j
has a request with timestanp T. O-dered so that entry with | owest

ti mestanp at head.

Tr:
Time stanp of pending |ocal request

R Subset of Ni
Set of processes fromwhich i has received reply for its request

D: Subset of Ni
Set of processes for which i has deferred the reply to their requests

l ock(), unlock():
A local nutex lock to synchronize the two threads.

Process i consists of two threads. One servicing the application, and
one nonitoring the network

Application thread:

Request () /1 Request gl obal nutex

Wait for Notification // Wait until notified by network thread
Critical Section /1l Operate in exclusive node

Rel ease() /1l Rel ease mut ex

Application Functions:



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012

Request () :
I ock()
Tr = Ti() /1l Get time stanp
R={}
D= {}
Send (Request, i, Tr) to each j in N

Add (i, Tr) to Q
waiting = true
unl ock()

Rel ease():
 ock()
Send (Release) to each j in Ni
Pop top elenent fromQ
unl ock()



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012

Net wor k Functi on

while true:
m = Recei ve()
 ock()
if m==(Request, j, T):
Add (j, T) to Q
if waiting & j !'in R&& Tr < T:
D=DU({j} /1 Defer response to j
el se
Send (Reply, i) to j
else if m== (Reply, j):
R=RU({j}
if jinD
D=D- {j}
Send (Reply, i) to j
Check()
else if m== (Rel ease)
Pop top elenent fromQ

Check()
unl ock()
Check(): /1 Check to see if i is now enabl ed

if R==N && (i, Tr) at front of queue:
waiting = fal se
Notify application



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 10

Why does Lanport’s al gorithm work?
Key i dea:

When process X generates request with tinme stanp Tx, and it has
received replies fromall y in Nx, then its Q contains all requests
with time stanps <= TX.

Expressed as fol |l ows:

Rule: If x receives nessage (Reply, y), this indicates

that one of the follow ng nust hold:
1. y does not have a pending event with time stamp Ty < Tx, or
2. x already has an entry of the form(y, Ty) in Q

Let’s see how this rule gets inplenented. Wen node i receives
(Request, j, T), it does either an "immedi ate" reply or a "deferred"

reply.

| MMEDI ATE REPLY. Happens when any of the follow ng conditions hold:
A 'waiting
B. j inR
C Tr >T

This will cause j to receive the nessage (Reply, i). Letting x =
and y = i, we can categorize the three cases as foll ows:

A 'waiting
Node i does not want access to critical section
Rule 1 applies: i does not have a pendi ng event

B. j inR
Node j already replied to i’s request
Rule 2 applies: j has an entry (i, Tr).

C Tr >T
Node j’'s request has an earlier tinestanp.
Rule 1 applies: i has a pending event, but its time stanp is

|later than Tr.

DEFERRED REPLY. (Cccurs after node i receives (Reply, j). That
reply is an acknowl edgenent that j has received i’'s request, and so
Rul e 2 applies.

The deferred reply is the key trick for dealing with out of order
messages. By holding back its reply, i will not let j "junmp the gun",
acting on its own request even though i has an earlier request.



10- nut ual - excl usi on. t xt

Per f or rance i ssues:

Wed Nov 28 21:45:02 2012 11

Define a "cycle" to be a conplete round of the protocol with one

process i
We can see
Process

1
2. Process
3. Process

this cycle would invol

entering its critica

sendi ng n-1 request
receiving n-1 reply
sending n-1 rel ease

section and then exiting.

ve 3(n-1) nessages as foll ows:

nessages
nessages
nessages.



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 12

Al ternative organi zation: Token ring
| dea:

Number processes 0, 1, ..., n-1.
Define next(i) =i + 1 nmod n

Processes are logically connected in ring, so that process i can send a
nmessage to next(i).

Run two threads for each process, one to service application and one
to manage network connection

Each process i maintains two | ocal Bool ean vari abl es:

havet oken:
Initialized to true for process 0 and to false for all others.

wai ting:
For application thread to comuni cate network thread.

Whul d al so need nutex to synchroni ze changes to these vari abl es, but
we will omit these details.

Application functions for process i

Request ():
i f havet oken:
Notify application
el se
waiting = true

Rel ease():
havet oken = fal se
Send (OK) to next (i)

Networ k functions for process i
/1 Starting up
i f havet oken: /1 True only for process 0O
Send (OK) to next(i)
havet oken = fal se
/1 Regul ar operation
while true:
Wien receive (OK):
if waiting:
havet oken = true
Notify application
el se
Send (OK) to next (i)

Correct ness:
* Clearly safe: Only one process can hold token
* Fairness: WIIl pass around ring at nost once before
getting access.

Per f or mance:
Each cycle requires between 0 & n-1 nessages
Latency of protocol between 0 & n-1



10- nut ual - excl usi on. t xt Wed Nov 28 21:45:02 2012 13

Fi nal observati ons

1. Lanport algorithm denonstrates how distributed processes can
mai ntai n consistent replicas of a data structure (the priority queue).

2. Lanport & Ricart & Agrawala’s al gorithns denonstrate utility of
| ogi cal cl ocks.

3. Centralized & ring based al gorithnms much | ower nmessage counts

4. None of these algorithnms can tolerate failed processes or dropped
nessages.



