ML

MACHINE LEARNING
DEPARTMENT

Embodied Visual Recognition

Katerina Fragkiadaki

Carnegie Mellon University






Internet Visio







refrigerators 7




person 0.975

laptop 0.949

potted plant 0.802
chair 0.719

|
|
|
|

person 0,727




2D CNNs do not have common sense

* No object permanence

e Objects move” with camera
motion

* Objects change size during zoom
in/ zoom out

* Objects are not in perspective
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Embodied visual recognition

- Neural architectures for video recognition under arbitrary
camera motion (what we can do for embodied vision)



3D representations
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3D representations

3D pointcloud 3D voxel occupancy

e ...ask too much: high level of 3D details that may be
Impossible to obtain

e ..ask too little: information about semantics of the objects
IS not captured



“Internal world models which are complete
representations of the external environment, besides
being impossible to obtain, are not at all necessary
for agents to act in a competent manner.”

Intelligence without reason, IJCAI, Rodney Brooks (1991)



To 3D or not to 3D?



3D feature maps
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Geometry-Aware Recurrent Networks

1.Hidden state: geometrically consistent 3D feature
maps
2.Egomotion-stabilized hidden state updates

3D MaskRCNN
View Prediction
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Geometry-Aware Recurrent Networks
(GRNNSs)
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Geometry-Aware Recurrent Networks
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A set of differentiable neural modules to learn to go
from 2D to 3D and back
A lot of SLAM ideas into the neural modules



Training GRNNSs

View Prediction 3D MaskRCNN
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1.Self-supervised via predicting images the agent will
see under novel viewpoints
2.Supervised for 3D object detection



Image generation

rotate to query view

Image generator
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Results - view prediction

# of input views
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Results - view prediction
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1. Neural scene representation and rendering DeepMind, Science, 2018
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Results - view prediction
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Input views GRNNs

1. Neural scene representation and rendering DeepMind, Science, 2018




3D Object Detection

RPN
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Results - 3D object detection
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Results - 3D object detection
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View Prediction

Egomotion estimation

Differentiable SLAM for better space-aware deep feature learning
Generative model of scenes with a 3D bottleneck when trained

from view prediction
Generalize better than 2D models



Embodied visual recognition

- Learning image representations supervised by moving

and watching objects move



Embodied visual recognition

- Can view prediction work beyond the toy simulation
worlds we have just showed?

- Can view prediction learn features useful for object
detection?

Yes, with a change of the loss function...



View-contrastive prediction

2D-to-3D unprojection ' 3D encoder-decoder " 3D alignment 3D-to-2D projection

View 1

View 2

2D ML loss I
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View-contrastive prediction

Target view RGB estimates




View-contrastive prediction

Target view Embeddings




View-contrastive prediction




Semi-supervised learning of 3D object

detection
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Static scenes
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imagination flow
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3D object discovery
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Results - unsupervised
moving object segmentation

Top-down view of connected components in 3D flow field
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Corresponding object boxes, with center-surround scores




Precision

Results - unsupervised
moving object segmentation

S) Contrast. finetuned (.598 mAP
= |(S) Contrast. (.518 mAP)

=== (§)2.5D PWC-Net (.312 mAP)
0.8 === (S) Tung et al. (.184 mAP)
== (GE) 2.5D PWC-Net (.036 mAP)




Conclusion

Embodiment is the problem and the
solution to visual recognition and
common sense learning



Conclusion

~ We must perceive in order to move, but we must
also move in order to perceive”

JJ Gibson

“If we figure out how to do 3D perception correctly,
no one will use 2D again, same way when color
T'V was invented no one used black and white”

Yaser Sheikh



vl Thank you!
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- Learning spatial common sense with geometry-aware recurrent
networks, Tung et al., CVPR 2019,
- Embodied View-Contrastive 3D Feature Learning, Harley et al., arxiv



