

Katerina Fragkiadaki

Carnegie Mellon University

Internet Vision

Mobile (Embodied) Computer Vision

refrigerators ?

person 0.975 potted plant 0.802 chair 0.719 person 0.727

2D CNNs do not have common sense

- No object permanence
- Objects ``move" with camera motion
- Objects change size during zoom in/ zoom out
- Objects are not in perspective

 Neural architectures for video recognition under arbitrary camera motion

 Neural architectures for video recognition under arbitrary camera motion (*what we can do for embodied vision*)

- Neural architectures for video recognition under arbitrary camera motion (*what we can do for embodied vision*)
- Learning image representations supervised by moving and watching objects move

- Neural architectures for video recognition under arbitrary camera motion (*what we can do for embodied vision*)
- Learning image representations supervised by moving and watching objects move (*what embodiment can do for us*)

- Neural architectures for video recognition under arbitrary camera motion (*what we can do for embodied vision*)
- Learning image representations supervised by moving and watching objects move (*what embodiment can do for us*)

3D representations

3D representations

- ...ask too much: high level of 3D details that may be impossible to obtain
- ...ask too little: information about semantics of the objects is not captured

3D representations

*`Internal world models which are complete representations of the external environment, besides being impossible to obtain, are not at all necessary for agents to act in a competent manner."

Intelligence without reason, IJCAI, Rodney Brooks (1991)

 ...ask too much: high level of 3D details that may be impossible to obtain

 ...ask too little: information about semantics of the objects is not present

To 3D or not to 3D?

 $H \times W \times D \times C$

 $H \times W \times D \times C$

- 1.Hidden state: geometrically consistent 3D feature maps
- 2.Egomotion-stabilized hidden state updates

Geometry-Aware Recurrent Networks (GRNNs)

 $H \times W \times D \times C$

Geometry-Aware Recurrent Networks (GRNNs)

- A set of differentiable neural modules to learn to go from 2D to 3D and back
- A lot of SLAM ideas into the neural modules

Training GRNNs

 Self-supervised via predicting images the agent will see under novel viewpoints
Supervised for 3D object detection

Image generation

rotate to query view

project

Input views

1. Neural scene representation and rendering DeepMind, Science, 2018

1. Neural scene representation and rendering DeepMind, Science, 2018

1. Neural scene representation and rendering DeepMind, Science, 2018

3D Object Detection

Results - 3D object detection

Results - 3D object detection

Results - 3D object detection

GRNNs

- Differentiable SLAM for better space-aware deep feature learning
- Generative model of scenes with a 3D bottleneck when trained from view prediction
- Generalize better than 2D models

Embodied visual recognition

- Neural architectures for video recognition under arbitrary camera motion
- Learning image representations supervised by moving and watching objects move

Embodied visual recognition

- Can view prediction work beyond the toy simulation worlds we have just showed?
- Can view prediction learn features useful for object detection?

Yes, with a change of the loss function...

Target view

RGB estimates

Target view

Embeddings

Semi-supervised learning of 3D object detection

Static scenes

Dynamic scenes

3D imagination flow

Dynamic scenes

3D object discovery

Results - unsupervised moving object segmentation

Top-down view of connected components in 3D flow field

Corresponding object boxes, with center-surround scores

Results - unsupervised moving object segmentation

Conclusion

Embodiment is the problem and the solution to visual recognition and common sense learning

Conclusion

We must perceive in order to move, but we must also move in order to perceive"

JJ Gibson

"If we figure out how to do 3D perception correctly, no one will use 2D again, same way when color TV was invented no one used black and white"

Yaser Sheikh

Thank you!

Fish Tung Ricson Chen Adam Harley Xian Zhou Fangyu Li

Shrinidhi K. Lakshmikanth

- Learning spatial common sense with geometry-aware recurrent networks, Tung et al., CVPR 2019,
- Embodied View-Contrastive 3D Feature Learning, Harley et al., arxiv