Vote Elicitation: Complexity and
Strategy-Proofness*

Vincent Conitzer Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213
{conitzer, sandholm }@cs.cmu.edu

June 12, 2002

Abstract

Preference elicitation is a central problem in AI, and has received sig-
nificant attention in single-agent settings. It is also a key problem in
multiagent systems, but has received little attention here so far. In
this setting, the agents may have different preferences that often must
be aggregated using voting. This leads to interesting issues because
what, if any, information should be elicited from an agent depends
on what other agents have revealed about their preferences so far. In
this paper we study effective elicitation, and its impediments, for the
most common voting protocols. We analyze the complexity of deter-
mining whether enough information has been elicited, as well as the
complexity of deciding whose votes to elicit. We study these questions
for unweighted and weighted voters, with uniform and heterogeneous
elicitation costs across voters, and with a constant as well as with
an unbounded number of candidates in the election. We also show

*This material is based upon work supported by the National Science Foundation under
CAREER Award IRI-9703122, Grant I1S-9800994, ITR 11S-0081246, and ITR I1S-0121678.
A short early version of this paper has been accepted for publication at the National
Conference on Artificial Intelligence (AAAT), Edmonton, Canada, 2002.

that elicitation introduces additional opportunities for strategic ma-
nipulation by the voters. We demonstrate how to curtail the space of
elicitation schemes so that no such additional strategic issues arise.

1 Introduction

Preference elicitation is a central problem in AI. To build a bot that acts in-
telligently on behalf of any type of agent (a human, a corporation, a software
agent, etc.), the bot needs to know about the agent’s preferences. How-
ever, the bot should only elicit pertinent preference information from the
agent because determining and expressing preferences can be arduous. Sig-
nificant work has been done on selective preference elicitation (e.g., [2,3, 8~
10, 17,23, 24, 28, 29]).

Preference elicitation is also a key problem in multiagent systems, but has
received little attention so far.! The agents may have different preferences
over the set of candidates that the agents must collectively choose among
(e.g., potential presidents, joint plans, resource allocations, task allocations,
etc.). The most general method for aggregating preferences is voting.? In tra-
ditional voting, each voter is asked for its complete preferences. We observe
that intelligently eliciting preferences from the voters can allow the voting
protocol to determine the outcome well before all of the preferences have been
elicited. This is desirable for any of several reasons: 1) it can be costly for an
agent to determine its own preferences (e.g., computationally [18, 20, 25]), 2)
communicating the preferences introduces overhead (network traffic, travel-
ing to the voting booth to vote, traveling door to door to collect votes, etc.),
and 3) less preference revelation is desirable due to privacy reasons.

Attempting to efficiently elicit preferences leads to interesting issues in
the voting context because what, if any, information should be elicited from
an agent depends on what other agents have revealed about their preferences
so far. The goal here is to determine the right outcome while eliciting a
minimal amount of preference information from the voters. The most effec-
tive elicitation schemes make use of suspicions about the agents’ preferences.

LA notable exception is bid elicitation in combinatorial auctions (e.g., [4-6,16]) and
exchanges [27]. Market mechanisms where agents reveal their demand (or price) on goods
at every iteration based on price feedback (or quantity feedback) can also be viewed as a
form of incremental preference revelation (e.g., [21, 22,25, 26, 30, 31]).

2Voting mechanisms have been used also for computational agents (e.g., [11-15]).

Such suspicions can be the result of votes in previous elections, an under-
standing of the candidates in the election, an understanding of how each
agent relates to each candidate, etc. To see how suspicions may help the
elicitation process, consider a simple election with two candidates. If the
elicitor knew beforehand which agents would vote for the eventual winner,
simply querying enough of those voters would suffice.

In this paper we analyze the possibility of effective vote elicitation, and
demonstrate two categories of impediments. First, optimal elicitation can
be computationally complex. In Section 4 we show that even determin-
ing whether enough information has been elicited is N/ P-complete for some
voting protocols. In Section 5 we show that for most of the voting proto-
cols, determining an efficient elicitation policy is N P-complete (even with
perfect suspicions). Second, in Section 6 we show that in various ways, elic-
itation can introduce additional opportunities for strategically manipulating
the election. We then show how to avoid such problems by curtailing the
space of elicitation schemes.

2 Common voting protocols

In this section we summarize the common voting protocols that we analyze.
We consider elections with m candidates and n voters (agents). A voting
protocol defines a function from the set of all possible combinations of votes
to the set of candidates, the winner determination function. We now review
the most common protocols in use, all of which will be studied in this paper.

e Plurality. Each candidate receives one point for each voter that ranked
it first. The candidate with the most points wins.

e Borda. For each voter, a candidate receives m — 1 points if it is the
voter’s top choice, m — 2 if it is the second choice, .. ., 0 if it is the last.
The candidate with the most points wins.

e Copeland (aka. Tournament). The protocol simulates a pairwise elec-
tion for each pair of candidates in turn (in a pairwise election, a candi-
date wins if it is preferred over the other candidate by more than half
of the voters). A candidate gets 1 point if it defeats an opponent, 0
points if it draws, and -1 points if it loses. The candidate with the most
points wins.

e Maximin. A candidate’s score in a pairwise election is the number of
voters that prefer it over the opponent. A candidate’s number of points
is its lowest score in any pairwise election. The candidate with the most
points wins.

e Single Transferable Vote (STV). The winner determination process pro-
ceeds in rounds. In each round, a candidate’s score is the number of
voters that rank it highest among the remaining candidates, and the
candidate with the lowest score drops out. The last remaining candi-
date wins. (The name comes from the fact that a vote transfers from
its top remaining candidate to the next highest remaining candidate
when the former drops out.)

e Approval. Each voter labels each candidate as either approved or dis-
approved. The candidate that is approved by the largest number of
voters wins.

3 Definition of elicitation

In this section, we formally define elicitation. We distinguish between full
elicitation, where the entire vote is elicited from every agent; coarse elicita-
tion, where upon querying an agent the elicitor always asks for the agent’s
entire vote; and fine elicitation where this need not be the case (for exam-
ple, an agent may be asked only what its most preferred candidate is). We
formalize elicitation policies as trees.

Definition 1 A coarse elicitation tree is a tree with the following properties:

e FEach nonleaf node v is labeled with an agent a, to be queried.

e Fach nonleaf node v has a child for each of the possible votes of agent
Qy .

e On each path from the root to a leaf, each agent occurs at most once.

This tree determines how the elicitation will proceed for any combination
of votes by the agents. The elicitor starts at the root. At each node, it queries
the corresponding agent, and subsequently moves to the child corresponding
to the obtained vote. We say the tree is valid for a protocol when for each
leaf, given the votes corresponding to the path from the root to that leaf, the
election’s outcome is determined.

Definition 2 A fine elicitation tree is a tree with the following properties:

e Fach nonleaf node v is labeled with an agent a, to be queried, a subset
of that agent’s possible votes S, (the ones consistent with a,’s responses
so far), and a query to be asked at that node. The query is given by a
partition T, of S,; once the query is answered, one element of T, is
the set of remaining consistent votes.

e FEach nonleaf node v has a child for each element of T,.

e Given a nonleaf v, if a, does not occur anywhere else on the path from
the root to v, then S, is the set of all possible votes by a,; otherwise,
constder the node w closest to v on that path with a, = a,,. The element
of T, corresponding to w’s child on the way to v must equal S,.

e Fach partition T, has at least 2 elements.

The interpretation is as follows. Each node still corresponds to a query to
the corresponding agent. A subset at a node is the set of the agent’s possible
votes that are consistent with its responses so far. The partition indicates
the various ways in which this set may be reduced through the query.

We say the tree is valid for a protocol if for each leaf, the outcome of the
election is determined by the responses to the queries on the path to that
leaf. From now on, we only consider valid trees.

Our model of elicitation is very general. It can be used to represent
intuitively reasonable queries as well as baroque ones such as “Is it true
that a is your most preferred candidate or that you prefer b to ¢?” (which
could impose a computational burden on the voter disproportionate to the
fact that it is only one query). Reasonable fine elicitation policies will have
some restriction on the types of 7, allowed. Also, elicitation trees can be
extremely large. Therefore, it can be unreasonable to expect the elicitor to
use this explicit representation for its elicitation policy, much less to do an
exhaustive search over these trees to find one that minimizes the number of
queries (for example, in the average case). Nevertheless, each well-defined
elicitation policy corresponds to an elicitation tree, and hence elicitation trees
are useful tools for analysis.

4 Hardness of terminating elicitation

Any sensible elicitation policy would need to be able to determine when it
can safely terminate in the sense that the winning candidate can be deter-
mined from the elicited votes. In this section, we first show that for the
STV protocol, it can be hard to determine when the elicitation process can
terminate. We show this for unweighted voters and an unbounded number
of candidates in Section 4.1, and for weighted voters and a constant number
of candidates in Section 4.2. We then show that terminating elicitation is
easy for each of the other voting protocols under study (Section 4.3).

4.1 Hardness of terminating elicitation in STV with
equal weights

First we need a formal definition of the elicitation termination problem.

Definition 3 (ELICITATION-NOT-DONE) We are given a set of votes
S, a number t of votes that are still unknown, and a candidate h. We are
asked whether there is a way to cast the t votes so that h will not win.

In order to prove our hardness result, we make use of the following result
from the literature on the difficulty of manipulating an election.

Definition 4 (EFFECTIVE-PREFERENCE) We are given a set of
votes S and a candidate c. One vote is not yet known. Is there a way to cast
the last vote that makes ¢ win?

Theorem 1 (Known [1]) For the STV protocol, EFFECTIVE-
PREFERENCE is N P-complete, even under the restriction that at least one
of the votes in S puts ¢ in the top spot.

The restriction is of little interest in itself, but we will use it for our reduction.

Theorem 2 For the STV protocol, ELICITATION-NOT-DONE is N P-
complete, even when t = 1.3

3In all N'P-completeness proofs, we only prove N P-hardness because proving that the
problem is in NP is trivial.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary instance of EFFECTIVE-PREFERENCE (with the
restriction that at least one of the votes in S puts ¢ at the top) to an
instance of ELICITATION-NOT-DONE as follows. In the EFFECTIVE-
PREFERENCE instance, let the candidate set be Cgp and the set of given
votes Sgp. Then, in our ELICITATION-NOT-DONE instance, the candi-
date set is Cgp U {h}. The known (elicited) set of votes S includes all the
votes from Sgp, where h is appended to these votes at the bottom — with the
exception that one of the votes with ¢ at the top inserts h into the second
place (right behind ¢). Additionally, S includes |Sgp| additional votes which
place h in the top spot and rank the other candidates in whichever order.
Finally, we set ¢t = 1. We prove the instances are equivalent by making the
following observations. First, h will always survive until the last round as it
has almost half the votes at the start. Second, if there exists a way for the
last vote to be cast such that h does not win the election, we may assume
that this vote places h at the bottom, since if this vote ever transferred to h,
h would win the election as it would hold more than half the votes. Third,
h will not win the election if and only if it faces ¢ in the last round (if ¢
gets eliminated, the vote that ranks A right below ¢ would transfer to h and
h would win the election; on the other hand, c¢ is ranked above h in all the
votes that do not put h at the top, so ¢ would win the last round). Fourth,
as long as ¢ remains in the election, the score of each candidate (besides h)
in each round before the last will be exactly the same as the correspond-
ing score in the EFFECTIVE-PREFERENCE instance (if we give the same
value to the unknown vote in both instances). This follows from the fact
that in this case, no vote will ever transfer to or from h and the relevant
votes are identical otherwise. It follows that the remaining vote can be cast
in such a way as to lead ¢ to the final round if and only if the remaining vote
in the EFFECTIVE-PREFERENCE instance can make ¢ win the election.
But then, by our third observation, the instances are equivalent. [

4.2 Hardness of terminating elicitation in STV with a
constant number of candidates and unequal weights
In this subsection, we will show that if voters are weighted, it can be hard

to decide whether we can terminate elicitation even when the number of
candidates is 4. We first need to define the weighted version of the problem.

Definition 5 (WEIGHTED-ELICITATION-NOT-DONE) We are
given a set of known votes S with weights w;, a set T of voters with weights
w; whose votes are still unknown, and a candidate h. We are asked whether
there is a way to cast the votes inT" so that h will not win.

Theorem 3 For the STV protocol, WEIGHTED-ELICITATION-NOT-
DONE is N'P-complete, even when the number of candidates is 4.

Proof: Consider the DESTRUCTIVE-COALITIONAL-WEIGHTED-
MANIPULATION problem as defined in [7]. In that problem, we are given a
set of known votes S with weights w; (corresponding to the nonmanipulating
voters), a set T of voters with weights w; (corresponding to the manipu-
lating voters), and a candidate h. We are asked whether the manipula-
tors can cast their votes so that h does not win. It has been shown that
DESTRUCTIVE-COALITIONAL-WEIGHTED-MANIPULATION is NP-
complete, even when the number of candidates is 4 [7].

We observe that elicitation is done if and only if the unknown voters
cannot “destructively manipulate” the election. This establishes the equiva-
lence between the problems WEIGHTED-ELICITATION-NOT-DONE and
DESTRUCTIVE-COALITIONAL-WEIGHTED-MANIPULATION. There-
fore, WEIGHTED-ELICITATION-NOT-DONE is N'P-complete, even when
the number of candidates is 4. [

Theorems 2 and 3 apply to both fine and coarse elicitation because in
both the elicitor might end up in a situation where it has elicited some votes
completely and others not at all.

With unweighted voters and a constant number of candidates, terminat-
ing STV is easy (polynomial time). Because votes are interchangeable, the
elicitor can simply enumerate all effectively different vote combinations for

the remaining ¢ votes, and check each one. There are (mTLLTZI) < (t+1)™

of them (a standard combinatorial identity for the number of ways t in-
distinguishable balls can be placed into m! distinguishable bins), which is
exponential only in m, hence polynomial for constant m.

4.3 Ease of terminating elicitation in other voting pro-
tocols

For all the other voting protocols discussed in this paper, it can be determined
in polynomial time whether elicitation can be terminated, even when the

8

votes have different weights.

Theorem 4 Consider any voting protocol where each candidate receives a
numerical score based on the votes, and the candidate with the highest score
wins. Suppose that the score function is monotone, that is, if voter i changes
its vote so that {b : a > b} C {b:a >"" b}, a’s score will not decrease.
Finally, assume that the winner can be determined in polynomaial time. Then
for this protocol, WEIGHTED-ELICITATION-NOT-DONE can be solved in
polynomial time, by checking what the outcome would be for O(m) possible
block votes by the yet unelicited voters. (In a block vote, everyone votes the
same way.)

Proof: The analogous theorem has already been proven for DESTRUCTIVE-
COALITIONAL-WEIGHTED-MANIPULATION [7]. By the proof of The-
orem 3, WEIGHTED-ELICITATION-NOT-DONE is equivalent to
DESTRUCTIVE-COALITIONAL-WEIGHTED-MANIPULATION. =

All of the voting protocols under study, except STV, satisfy the precon-
ditions of the theorem. Thus:

Corollary 1 WEIGHTED-ELICITATION-NOT-DONE is in P for the
Borda, Copeland, Maximin, Plurality, and Approval* protocols.

5 Hardness of deciding which votes to elicit

In this section we study the complexity of deciding which voters’ preferences
should be elicited so as to be able to determine the winning candidate while
minimizing elicitation cost. In Section 5.1 we study the case where all voters
have equal weight (“say-so”) and equal cost of being elicited. In Section 5.2
we study the general case where the weights and elicitation costs may vary
across voters.

5.1 Equal weights and equal elicitation costs

The elicitor could use its suspicions about how the agents will vote to try to
design the elicitation policy so that few queries are needed. The suspicions

4Because the Approval protocol does not make the voters rank the candidates, Theo-
rem 4 needs some minor modifications to cover the Approval protocol.

9

could be represented by a joint prior distribution over the agents’ votes.
It is perhaps not too surprising that in this general setting, computational
complexity issues arise with regard to optimal elicitation, because the number
of probabilities in a general joint prior distribution is (m!)™. Given that this is
an impractically large amount of information to generate (and to input into
an elicitor bot), it is reasonable to presume that the language the elicitor
uses to express its suspicions is not fully expressive. With such a restricted
language, one might hope that the optimal elicitation problem is tractable.
However, this turns out not to be the case! We show that if this language
even accomodates as little as degenerate distributions (all the probability
mass on a single vote), determining an optimal coarse elicitation policy is
hard. In other words, it is hard even with perfect suspicions. This even
holds for unweighted voters with uniform elicitation costs (as long as the
number of candidates is allowed to grow). We define the effective elicitation
problem with perfect suspicions as follows:

Definition 6 (EFFECTIVE-ELICITATION) We are given a set of votes
S and a number k. We are asked whether there is a subset of S of size < k
that decides the election constituted by the votes in S.

All the reductions in this section will be from 3-COVER.

Definition 7 (3-COVER) We are given a set U of size 3q and a collection
of subsets {S; }1<i<, of U (where r > q), each of size 3. We are asked if there
1s a cover of U consisting of q of the subsets.

Theorem 5 For the Approval protocol, EFFECTIVE-ELICITATION is N'P-
complete.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary 3-COVER instance to the following EFFECTIVE-
ELICITATION instance. The candidate set is U U {w}. The votes are as
follows. For every S; there is a vote approving S; U {w}. Additionally, we
have r — 2¢q + 2 votes approving only {w}, for a total of 2r — 2q + 2 votes.
Finally, we set k = r — ¢+ 2. We claim the problem instances are equivalent.
First suppose there is a 3-cover. Then we elicit all the votes that approve
only w, and the votes that correspond to sets in the cover, for a total of k
votes. Then w is r—q+1 points ahead of all other candidates, with only r —q

10

votes remaining. Hence there is an effective elicitation. On the other hand,
suppose there is no 3-cover. Then eliciting k votes will always give one of the
candidates in U at least 2 votes, so that w can be at most — ¢ points ahead
of this candidate. Hence, with r — ¢ votes remaining, the election cannot
possibly be decided. So there is no effective elicitation. [

Theorem 6 For the Borda protocol, EFFECTIVE-ELICITATION is N P-
complete.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary 3-COVER instance to the following EFFECTIVE-
ELICITATION instance. The candidate set is U U {w} U B where B =
{b1,bs,...,bes2}. The votes are as follows. For each S; there is a vote ranking
the candidates (B/2,U — S;, B/2,S;,w), where the occurrence of a set in the
ranking signifies all of its elements in whichever order, and B/2 signifies some
subset of B containing half its elements. Finally, there are 4r — 2¢g — 2 votes
that rank the candidates (w, by, ..., bgy2, U1, ..., Usq, bg211, - - -, beay2), and an-
other 4r—2¢—2 that rank them (w, bgy,2, . . ., bsgr211, Usg, - - -, U1, D562, - - ., b1).
Let ¢ = 8 — 4q — 4, so that we have a total of g + r votes. Also, let
[= 64r? + 3¢, which is the number of points a candidate gets for being in
first place. Finally, we set £ = g + ¢q. We claim the problem instances are
equivalent. First suppose there is a 3-cover. We elicit all the votes that put
w on top, and the votes that correspond to sets in the cover, for a total of k
votes. Even after eliciting just the ones that put w on top, w is more than
%l > 2rl (since g > 4r) points ahead of all the elements of B, and with only
r votes remaining it is impossible to catch up with w for anyone in B. For a
given element u of U, the votes that put w on top result in a net difference
of g(8r? + %q + %) points between w and u. Of the ¢ remaining elicited votes,
precisely ¢ — 1 placed u ahead of half the elements of B, so the net difference
in points between w and u most favorable to u arising from these would be
—(q — 1)(32r* 4+ 3q). Finally, the vote that put u below all the elements of
b might contribute another —3. Adding up all these net differences, we find
that w is ahead by at least 64r® — 64qr? +12qr — 9¢® +4r — 5g — 5 points. On
the other hand, the maximum number of points u could gain on w with the
remaining number of votes is (r — q)(64r% + 3q) = 64r® — 64qr? + 3qr — 3¢>.
It is easily seen that the second expression is always smaller, and hence w is
guaranteed to win the election. So there is an effective elicitation. On the

11

other hand, suppose there is no 3-cover. First, we observe that w will always
win the election - we have already shown that the votes that put w on top
guarantee it does better than any element of B. For any element u of U, even
if u is always placed above all the other votes in U in the r votes correspond-
ing to the S;, it will still only gain r(32r? + 3¢) points on w here, which is
fewer than the g(8r% + %q + %) votes it loses on w with the other votes (since
g > 4r). So we can only hope to guarantee that w wins. Now, if there is an
elicitation that guarantees this, there is also one that elicits all the g votes
that put w on top, since replacing one of the other votes with such a vote
in the elicitation never hurts w’s relative performance to another candidate.
But in such an elicitation, there is at least one candidate v in U that is never
ranked below all the elements of B in the ¢ votes elicited that put w at the
bottom, since there is no 3-cover. Let us investigate how many points w may
be ahead of u after eliciting these votes. Again, the votes that put w on top
result in a net difference of g(8r%+ %q—k %) points. In the scenario most favor-
able to w, u would only gain ¢(32r?+4) points with the other ¢ votes. Adding
this up, w is ahead by at most 647® — 64qr? — 32r2 + 12qr — 6¢> + 4r — 6q — 2
after the elicitation. The maximum number of points u could gain on w with
the remaining number of votes is still 6413 — 64qr? + 3gr — 3¢%. It is easily
seen that the second expression is always larger, so we cannot guarantee that
w wins. So there is no effective elicitation.]

Theorem 7 For the Copeland protocol, EFFECTIVE-ELICITATION is N P-

complete.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary 3-COVER instance to the following EFFECTIVE-
ELICITATION instance. The candidate set is U U {w}. The votes we are
given are as follows. For every S; there is a vote which places S; in the
top three spots (in whichever order), w in the fourth spot, and the other
candidates in the spots below (in whichever order). Additionally, we have
r — 2q + 3 votes placing w in the top spot and the other candidates below it
in whichever order, for a subtotal of W = 2r — 2¢q + 3 votes. Finally, we im-
pose an arbitrary order on the elements of U and label them ag, a1, . .., as;—1.
For each i € {0,1,3¢ — 1}, we have another W votes which rank the candi-
dates (w, @;, @it 1(mod3q)s - - - » Qit+3g—1(mod3q))s and another W which rank them
(@i, Qi—1(mod3q)s - - - » Gi—3¢+1(mod3q))- (We call these the cyclical votes.) The to-
tal number of votes is (6¢ 4+ 1)W. Now we set k = (3¢ + 3)W + 3. We claim

12

the problem instances are equivalent. First suppose there is a 3-cover. We
elicit all the votes that put w on top, and the votes that correspond to sets
in the cover, for a total of k£ votes. Then in each pairwise election involving
w, we have found k — 1 = (3¢ + %)W + % votes that prefer w to the other
candidate. But then we have guaranteed that w wins every pairwise election,
and hence the Copeland election. So there is an effective elicitation.

On the other hand, suppose there is no 3-cover. First we show that if the
votes we elicit guarantee a pairwise victory between elements of U, a;, > a,
they can guarantee no other pairwise victory. In order to guarantee the given
pairwise victory, we need k — 1 = (3¢ + %)W + % votes to prefer a; to a;.
There are precisely 3¢g groups of cyclical votes of size W that are like this.
Since there are only W noncyclical votes, it follows that we need to elicit at
least (3¢ — %)W + % votes from the 3q cyclical groups, hence we need to elicit
more than half of the votes of each of these groups. Now we claim that for
each other pair of candidates c;, ¢, at least in one of these groups all votes
prefer ¢; to ¢;. If ¢; = w, we take the group that starts with (w,ay,...). If
c; = w, we take the group that ends with (...,q;, w). Otherwise, we know
that either the group starting (w, ay, .. .) or the one with (ay, ..., w) has the
desired property, since the order of the candidates represented by the dots in
these in one of them is the opposite of that of the other. (Unless ¢; = aj; in
this case either the group (w,...,q;) or (..., a;, w) has the desired property,
because by assumption a; # ¢; in this case.) Hence we have elicited more
than %W votes that prefer ¢; to ¢;, which means that we cannot guarantee
a pairwise victory of ¢; over ¢;, because k — %W votes are not enough for
this purpose. Since these were arbitrary, we can guarantee no other pairwise
victories.

Now we prove there can be no effective elicitation. First we note that we
cannot guarantee that w will win every pairwise election, since we must elicit
at least ¢ votes from the votes representing the S;; and as there is no 3-cover,
this means that there is some candidate ¢ that will be preferred to w twice
in this elicitation, and k£ — 2 votes is too few to guarantee the outcome of a
pairwise election. Hence, if we wish to guarantee that w will win, we have to
make sure that c loses at least two other elections; since otherwise, ¢ may win
all the pairwise elections that it still has a chance of winning (e.g., if all the
non-elicited votes put ¢ on top), and at least tie with w. But we have just
shown that it is impossible to guarantee two pairwise victories not involving
w. So we cannot guarantee that w will win. Could we perhaps guarantee that
another candidate wins the election? No, since we know we could guarantee

13

at most one pairwise victory for such a candidate. In the worst case (all the
other, non-elicited votes put this candidate at the bottom), this is the only
victory it will get, which cannot be enough to guarantee victory. So there is
no effective elicitation. [

Theorem 8 For the MAXIMIN protocol, EFFECTIVE-ELICITATION s
N P-complete.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary 3-COVER instance to exactly the same EFFECTIVE-
ELICITATION instance as we just did for Copeland. We show the two
problem instances are equivalent.

First suppose there is a 3-cover. As before we can elicit votes that guar-
antee that w wins every pairwise election. Thus, w will get more than half
of the votes in its worst pairwise election, and all the others will get fewer
than half (since at least w defeated them in their pairwise election), and w
is guaranteed to win. So there is an effective elicitation.

On the other hand, suppose there is no 3-cover. Then, as before, after
eliciting k£ votes there is still some candidate ¢ that w is not guaranteed to
defeat. Hence, if we wish to guarantee that w wins, we should guarantee
that ¢ loses to someone else, or else ¢ could at least tie with everyone and
thus do at least as well in its worst pairwise election as w (since w at best
ties with ¢). But, as we have shown in the previous proof, guaranteeing
such a loss entails that we find at most 3¢gW + % votes for w in any pairwise
election. Then, if some other candidate were to be placed on top, and w at
the bottom, in all the other, non-elicited votes, this would give the former
(3¢+ %)W — % votes in any pairwise election, more than enough to defeat w’s
worst score. So we cannot guarantee w wins the election. Could we perhaps
guarantee that another candidate ¢ wins the election? No - we would need to
ensure that each other candidate loses at least one pairwise election. All of
these guaranteed losses must somehow involve w since otherwise we can only
guarantee one such loss; hence, w would have to be guaranteed to beat each
other candidate except c. But since the votes that put w at the bottom are
useless for this purpose, we cannot elicit more than one of these; and hence
k —r — 1 of the votes we elicit must be from the ones that put w on top. But
then it is impossible to guarantee that w has a pairwise loss. So there is no
effective elicitation.]

14

So far in this section we have shown that determining an effective elic-
itation policy is hard for all of the protocols under study, except for STV
and Plurality. From the previous section, we already know that for the STV
protocol even knowing when to terminate is hard. The remaining protocol is
Plurality, where it is easy to elicit effectively given perfect suspicions (start
eliciting the winner’s votes first; if all of them have been elicited and termi-
nation is still not possible, elicit votes in a round-robin manner, one for each
non-winning candidate (as long as it has votes left), until the elicitation can
terminate).

In this section we showed that effective elicitation is N P-complete for
various voting protocols even when the elicitor has perfect suspicions about
how the voters will vote. Naturally, the elicitation problem does not become
easier if the elicitor has only probabilistic information about how the voters

will vote. In the appendix we show that in that setting, effective elicitation
can even be PSPAC E-hard.

5.2 Unequal weights or elicitation costs

We now analyze the general case where the voters” weights or the costs of
eliciting their preferences may differ across voters. All the hardness results
from Section 5.1 still hold in all of these settings because hardness results
carry over from special settings to more general settings. We now show,
however, that weights may introduce complexity even in the case where the
number of candidates is constant (even just 2).

Definition 8 (WEIGHTED-EFFECTIVE-ELICITATION) We are
giwen a set of votes S with elicitation costs ¢; and weights w;, and a number
B. We are asked whether there is a subset of S with combined elicitation cost
< B that decides the election constituted by the votes in S.

In order to demonstrate N'P-hardness, we reduce from the PARTITION
problem.

Definition 9 (PARTITION) We are given a set of integers {k; }1<i<¢ (pos-
sibly with multiplicities) summing to 2K, and are asked whether a subset of
these integers sum to K.

15

We are now ready to state our result. If there are only two candidates, all
of the voting protocols under study coincide to a “standard” protocol: the
candidate with more votes wins.’

Theorem 9 For the 2-candidate “standard” voting protocol, WEIGHTED-
EFFECTIVE-ELICITATION is N'P-complete, even when for all i, ¢; = w;
orc; = 0.

Proof: It is easy to show that the problem is in N'P. To show N P-hardness,
we reduce an arbitrary PARTITION instance to the following WEIGHTED-
EFFECTIVE-ELICITATION instance. The candidates are a and b. For each
k; let there be a voter with ¢; = w; = k;, voting for candidate a. Additionally,
let there be a single voter with ¢y = 0, wy = 1, also voting for candidate a.
Let B = K. We claim the instances are equivalent.

First suppose there is a solution to the PARTITION instance, that is, a
subset of the integers summing to K. Then eliciting the corresponding voters,
and the single costless voter, has a total cost of precisely K, and demonstrates
that K +1 of the total vote weight of 2K + 1 votes for candidate a. So there
is a solution to the WEIGHTED-EFFECTIVE-ELICITATION instance.

On the other hand, suppse there is a solution to the WEIGHTED-
EFFECTIVE-ELICITATION instance. Consider the set of k; corresponding
to elicited voters. By the cost constraint, these k; can sum to at most K.
Since the election is decided by the elicted votes, and the weight of the elicited
votes not corresponding to k; can be at most 1, it follows that the subset of
k; corresponding to elicited voters must sum to at least K. But then this
subset must sum to K exactly. So there is a solution to the PARTITION
instance. [

Because all the voting protocols under discussion reduce to the “standard”
voting protocol when there are two candidates, we can conclude the following;:

Corollary 2 For all of the protocols studied in this paper, WEIGHTED-
EFFECTIVE-ELICITATION is N'P-complete, even when for all i, ¢; = w
or ¢; =0, and the number of candidates is 2.

5The exception is the Approval protocol where a voter can approve or disapprove both
candidates. However, Theorem 9 applies to that protocol as well because it is possible that
each voter only approves one candidate. (Also, approving or disapproving both candidates
is nonsensical because it will not affect the outcome of the election.)

16

However, if either elicitation costs or weights are equal across voters, and
checking for termination is easy, there exist algorithms for WEIGHTED-
EFFECTIVE-ELICITATION that are exponential only in the number of
candidates, implying that the problem is not hard for any constant number
of candidates. (And, by the results of Section 5.1, we already know that the
WEIGHTED-EFFECTIVE-ELICITATION problem in these cases is hard
when the number of candidates is allowed to grow.)

Theorem 10 If w; = 1 for all ¢, then for all voting protocols where the
voters do mot have a richer voting language than ranking the candidates®,
WEIGHTED-EFFECTIVE-ELICITATION can be solved by checking for
O((n+1)™) (or O((n +1)*") in the Approval protocol) possible elicitations
of size k whether the process could be terminated after this elicitation.

Proof: The key observation is that when the weights are all equal, there
is no reason to ever elicit a voter with greater elicitation cost instead of
another voter with smaller elicitation cost that casts the same vote. Hence,
we divide the voters into m! pools (or 2™ in the Approval protocol) on the
basis of the vote they will cast; then we order the voters in each pool by
decreasing cost. By the above observation, we know that if there exists an
effective elicitation, there also exists one where in each pool p, we only elicit
the cheapest k, voters, for some vector of k, values. Since there are at most
n + 1 possibilities for each k,, it follows that the total number of elicitations
we need to check is O((n+1)™) (or O((n+1)%") in the Approval protocol).
]

In the case where the elicitaton costs are equal across voters, the easiness
result holds under the block-vote termination property:

Definition 10 A wvoting protocol satisfies the block-vote termination prop-
erty if, given a set S of known votes, a set T' of voters whose votes are not
yet known, and a candidate h, there exists a way to cast the votes in T to
make h not win if and only if the voters in T can make h not win by all
casting the same vote (hence a “block vote”).

It follows from Theorem 4 that all the voting protocols studied in this
paper, except STV, satisfy the block-vote termination property.
We will make use of the following lemma in our next theorem.

6This result actually applies to all voting protocols, but the O() complexity may differ.

17

Lemma 1 Consider the following two scenarios. In the first, we are given a
set S of known votes, a set T of voters whose votes are not yet known, and a

candidate h. The second is the same except T' is replaced by a set U of > wy
teT

votes with weights 1 (that is, we can cast every unit of vote weight indepen-
dently). Then, if the protocol satisfies the block-vote termination property,
there exists a way to cast the votes in T to make h not win if and only if
there exists a way to cast the votes in U to make h not win.

Proof: By the block-vote termination property, it is possible to make h not
win in both cases if and only there is a block vote of weight - w; = |U| that
teT

makes h not win. n

Now we are ready to present our result for equal elicitation costs and
unequal weights.

Theorem 11 Consider any voting protocol where the voters do not have a
richer voting language than ranking the candidates. If ¢; = 1 for all i, and
the protocol satisfies the block-vote termination property, then WEIGHTED-
EFFECTIVE-ELICITATION can be solved by checking for O((n+1)™) (or
O((n+1)%") in the Approval protocol) possible elicitations of size k whether
the process could be terminated after this elicitation.

Proof: The key observation here is that when the elicitation costs are all
equal, and the block-vote termination property holds, there is no reason to
ever elicit a voter with smaller weight instead of another voter with greater
weight that casts the same vote. (If, in the former case where we actually
elicit a vote with a smaller weight, we can terminate elicitation, it follows
from Lemma 1 that there is no way to cast the remaining votes to change
the winner even if we could cast each unit of vote weight independently.
But then, if we elicit the vote with greater weight instead, this essentially
corresponds to specifying some of the remaing vote weight, which certainly
cannot help in changing the winner of the election.)

Hence, we divide the voters into m! pools (or 2™ in the Approval protocol)
on the basis of the vote they will cast; then we order the voters in each pool
by increasing weight. By the above observation, we know that if there exists
an effective elicitation, there also exists one where in each pool p, we only
elicit the k, voters with the greatest weight, for some vector of k, values.
Since there are at most n+ 1 possibilities for each k,, it follows that the total

18

number of elicitations we need to check is O((n + 1)™) (or O((n + 1)2") in
the Approval protocol). [

(More precisely, because we know we will elicit (no more than) k voters
in this case, the number of possible elicitations that we need to check is at
most (m;jle)—k indistinguishable balls into m! distinguishable bins.)

So, effective elicitation with constant elicitation costs but varying weights
is easy for the Approval, Plurality, Borda, Copeland, and Maximin protocols.
For STV with varying weights, we have already shown that even termination

is hard.

6 Strategy-proofness of elicitation

We now turn to strategic issues that may be introduced into a voting proto-
col by an elicitation process. Elicitation may reveal information about other
agents’ votes to an agent, which the agent may use to change its vote strate-
gically. This is undesirable for two reasons. First, it gives agents that are
elicited later an unfair advantage, causing the protocol to put undue weight
on their preferences. Second, it leads to less truthful voting by the agents.
This is undesirable because, while voting protocols are designed to select a
socially desirable candidate if agents vote truthfully, untruthful voting can
lead to a reduction in the social desirability of the outcome. We demonstrate
how such strategic issues may arise, and then suggest avenues to circum-
vent them. However, these avenues entail restricting the space of possible
elicitations, causing a reduction in the potential savings from elicitation.

To analyze strategic interactions, we need some tools from game theory.
To bring the voting setting into the framework of noncooperative game the-
ory, we assume that agent i’s preferences are defined by its type 6;; the agent
gets utility w;(6;, ¢) if candidate ¢ wins. We first define a game:

Definition 11 In a (normal form) game, we are given a set of agents A;
a set of types ©; for each agent i; a commonly known prior distribution ¢
over ©1 X ©y X ... X O4; a set of strategies ¥; for each agent i € A; a
set of outcomes O (candidates in the case of voting); an outcome function
0: 31 XYy X...xXXq — O; and a utility function u; : ©; x O — R for each
agent i € A.

An agent knows its own type and can thus let its strategy depend on its

19

type according to a function f; : ©; — ;. We also need a notion of how an
agent would play a game strategically. This may depend on how others play.

Definition 12 A strategy function profile (fi, fa, ..., fla)) is a Bayes-Nash
equilibrium (BNE), if for each agent i € A, each 0; € ©;, and each strategy
o; € Ei,

Ey(ui(0s,0(f1(01), f2(02), ..., fi(0i), . .-, fia)(0)4))))|6:)

>
Ey(ui(0i,0(f1(01), f2(02), ..., 04, fia)(0)4))))105)

(that is, each f; chooses, for each 0;, a strategy that mazimizes i’s expected
utility given the other players’ f;s).

We are now ready to state our results.

6.1 Coarse elicitation

First we show that coarse elicitation may lead to strategic manipulations
when it reveals even slightly more than just the fact that the agent is being
elicited.

Theorem 12 In a coarse elicitation protocol, the following properties can
hold simultaneously:

e the protocol reveals no information to any agent except that the agent’s
type s elicited, and how many other agents have had their types elicited
before,

e the elicitation policy is optimized to finish as quickly as possible on
average given the distribution over the agents’ types (presuming the
agents vote truthfully), and

o truthful voting is a BNE with full elicitation,

o truthful voting is not a BNFE here. In particular, an agent may have an
incentive to vote differently depending on how the other agents vote.

20

Proof: Consider an Approval” election with 3 voters, i, j and k, and 3
candidates, a, b, and c¢. Ties are broken randomly. Define truth-telling
to mean approving all candidates that give you utility > % Ties are broken
randomly. Agents’ types are independent and the distributions are as follows.
With probability %, 1 has utility 1 for ¢, and utility 0 for a and b; with
probability %, it has utility 1 for a, and utility 0 for b and ¢. With probability
%, J has utility 1 for ¢, and utility 0 for a and b; with probability %, it has
utility 1 for b and ¢, and utility 0 for a. It is easy to see that truth-telling
is always an optimal strategy for ¢ and j. With probability 1, k£ has utility
1 for a, i for b, and 0 for c. For k not to approve ¢, and to approve a, is
always optimal. In the full elicitation case, should k£ approve b7 If j has its
first type, it makes no difference. What if 5 has its second type? If ¢ has its
first type, approving b leads to a tie between b and ¢, and (expected) utility
é; not approving b leads to a victory for ¢ and utility 0. If ¢ has its second
type, approving b leads to a tie between a and b and utility g; not approving
b leads to a victory for a and utility 1. Hence, in the full elicitation case,
given that we are in a case where it matters whether £ approves b, approving
b gives utility %, and not approving b gives utility %; so not approving b is
optimal. Thus, truth-telling is a BNE here.

For the coarse elicitation case, we first design a policy that is optimal
with respect to the agents’ type distributions. Query Q(!) asks voter [which
candidates it approves. Then an optimal elicitation protocol is

1: first ask Q(i);

2a: if the answer was {c}, ask Q(j);

2b: otherwise, ask Q(k);

3: if do not know the winner yet, query the last voter.

To show optimality with respect to the type distribution, assume the
agents reply truthfully. If ¢ has its first type, and j its first, we finish after
2a, in 2 steps. If ¢ has its second type, we finish after 2b, in 2 steps. But
these are the only cases in which we can hope to finish in only two steps, so
the protocol is optimal.

Now, if k is queried second, this implies to it that ¢ is of its second type,
and it is motivated to answer truthfully. But if ¢ is queried third, this implies
to it that ¢ is of its first type, and j of its second type; and k is motivated to

"We use the Approval protocol to demonstrate the negative results (Theorems 12
and 14) because 1) this demonstrates that these strategic issues can occur even in a
very simple protocol, and 2) the protocol has a natural query type also for fine elicitation.
However, similar strategic issues arise in any reasonable protocol.

21

lie and approve b. So truth-telling is not a BNE here. [

However, if the elicitation reveals no information to the agent being
elicited (beyond the fact that the agent is being elicited), then elicitation
does not introduce strategic issues:

Theorem 13 Consider a coarse elicitation protocol which manages to reveal
nothing more to the agent than whether or not his type is elicited. Then, the
set of BNFEs is the same as in the corresponding full elicitation voting game.®

Proof: We claim that the normal form of the game is identical to that in
the full elicitation setting; this implies the theorem. Obviously, the ©;, the
u;, and ¢ remain the same. Now consider the ¥;. Because no information is
revealed upon elicitation, the voter cannot condition its response on anything
but its type, as in the full elicitation case. That is, each agent need only
decide on the one vote that it will always cast if it is elicited. Hence, the
strategy set of an agent is simply the space of votes, as it is in the full
elicitation case. Finally, by our requirement that this elicitation produces
the same outcome as full elicitation, o is the same. [

It is an interesting open problem how to design an elicitation protocol
that reveals no information about how many agents have had their types
elicited so far. This seems difficult because any protocol will at least betray
the real time at which an agent is queried.

6.2 Fine elicitation

We now show that fine elicitation can lead to additional strategic issues even
if no unnecessary information is revealed to the agents.

Theorem 14 In a fine elicitation protocol, the following properties can hold
simultaneously:

e the protocol reveals no information to any agent except the queries to
the agent and the order of those queries,

8For the game-theoretically inclined, we observe that some of the BNEs in the coarse
elicitation case are not subgame perfect. These equilibria are unstable in the full elicitation
case as well.

22

e the elicitation policy is optimized to finish as quickly as possible on
average given the distribution over the agents’ types (presuming the
agents vote truthfully), and

o truthful voting is a BNE with full elicitation,

e truthful voting is not a BNFE here. In particular, an agent may have an
incentive to vote differently depending on how the other agents vote.

Proof: Consider an Approval election with 2 voters, ¢ and j, and 3 candi-
dates, a, b, and c. Define truth-telling to mean approving all candidates that
give you utility > % Ties are broken randomly. Agents’ types are indepen-
dent and the distributions are as follows. With probability %, 1 has utility 1
for b and ¢, and utility 0 for a; with probability %, it has utility 1 for a and
b, and utility O for c. It is easy to see that truth-telling is always an optimal
strategy for i. With probability 1, j has utility 1 for a, % for b, and 0 for
c. For j not to approve ¢, and to approve a, is always optimal. In the full
elicitation case, should j approve b? If ¢ has its first type, approving b leads
to victory for b and a utility of %; not approving b leads to a 3-way tie and
utility of 1—72 If 7 has its second type, approving b leads to a 2-way tie between
a and b and utility %; not approving b leads to a victory for a and utility

1. Hence, in the full elicitation case, approving b gives utility %, and not
approving b gives utility %; so approving b is optimal. Thus, truth-telling is

a BNE here.

For the fine elicitation case, we first design a policy that is optimal with
respect to the agents’ type distributions. The natural restriction here is
to allow only the following type of query: query Q(k,d) asks voter k if it
approves candidate d. Then an optimal elicitation protocol is

1: first ask Q(i,a);

2a: if the answer was 'no’, ask Q(i,b); Q(4,b); Q(J, ¢);

2b: otherwise, ask Q(j,a); Q(i,b); Q(4,0); Q(i,c).

3: if we do not know the winner yet, ask the remaining queries.

To show optimality with respect to the type distribution, assume the
agents reply truthfully. If ¢ has its first type, we finish after 2a, in 4 steps; if
1 has its second type, we finish after 2b, in 5 steps. This is optimal.

Now, if the first query to j is Q(j, b), this implies to it that 7 is of its first
type and it is motivated to answer truthfully. But if the first query to j is
Q(j,a), this implies to it that i is of its second type; and i is motivated to

23

lie and not approve b. So truth-telling is not a BNE here. [

Finally, we show that with a certain restriction on elicitation policies, we
can guarantee that fine elicitation does not introduce any strategic effects.

Definition 13 A fine elicitation policy is nondivulging if the next query to
an agent (if it comes) depends only on that agent’s own responses to previous
queries. (Whether or not the next query is asked can depend on the agent’s
and the other agents’ responses to queries so far.)

Theorem 15 Consider a fine elicitation protocol which manages to reveal
nothing more to the agent than the queries to the agent and the order of
those queries. If the elicitation policy is nondivulging, then the set of BNEs
1s the same as in the full elicitation voting game.

Proof: We claim that the normal form of the game is identical to that in
the full elicitation setting; this implies the theorem. Obviously, the ©;, the
u;, and ¢ remain the same. Now consider the ;. Because the agent knows
the first query to it (if it comes), it can determine its response up front.
The next query (if it comes) can only depend on this response, so the agent
knows it, and can prepare a response to it up front as well; and so on. So,
in this setting, we can define the agent’s strategy to be this entire sequence
of responses. But this sequence correponds to exactly one vote in the full
elicitation case.” Hence, the strategy set of an agent is simply the space of
votes, as it is in the full elicitation case. Finally, by our requirement that
this elicitation produces the same outcome as full elicitation, o must be the
same. [

While a restriction to nondivulging elicitation policies avoids introducing
additional strategic effects, it can reduce the efficiency of elicitation.

7 Conclusion and future research

Preference elicitation is a central problem in AI, and has received significant
attention in single-agent settings. Preference elicitation is also a key problem
in multiagent systems, but has received little attention here. In this setting,

9By our definition of a fine elicitation policy, no queries are asked that would enable
an agent to express inconsistent (e.g., cyclical) preferences.

24

the agents may have different preferences that often must be aggregated using
voting. This leads to interesting issues because what, if any, information
should be elicited from an agent depends on what other agents have revealed
about their preferences so far. In this paper we studied effective elicitation for
the most common voting protocols: Plurality, Approval, Borda, Copeland,
Maximin, and Single-Transferable Vote (STV).

We first studied the complexity of determining whether enough informa-
tion has been elicited. We showed that this is N P-complete in the STV
protocol (even with unweighted voters or, if we allow for weighted voters,
even with just 4 candidates). We presented a polynomial-time termination
algorithm for elicitation in the STV protocol when the number of candidates
is constant and the voters are unweighted. For all the other protocols under
study, we presented a polynomial-time termination algorithm that applies
even with weighted voters and an unbounded number of candidates.

For protocols other than STV, we studied the complexity of deciding
which votes to elicit. When voters are equally weighted and have the same
elicitation costs, then for an unbounded number of candidates, for each of
these protocols, determining how to elicit effectively is N P-complete even
with perfect suspicions about how the agents will vote. The exception is
the Plurality protocol where such effective elicitation is easy. When voters
are weighted and elicitation costs may vary across voters, effective elicitation
is N P-complete for all voting protocols, even with just two candidates and
perfect suspicions about how the voters will vote. For unweighted voters
with varying elicitation costs and perfect suspicions, we developed an opti-
mal elicitation algorithm that is exponential only in the number of candidates
(implying that the problem is easy for any constant number of candidates).
For weighted voters with uniform elicitation costs (with perfect suspicions),
for voting protocols that have the block-vote termination property (includ-
ing all of the protocols studied in this paper except STV), we developed
an optimal elicitation algorithm that is exponential only in the number of
candidates (implying that the problem is easy for any constant number of
candidates). Finally, we showed that if the elicitor is uncertain about how the
voters will vote, effective elicitation can become PSPACE-hard (even with
unweighted voters and uniform elicitation costs, but an unbounded number
of candidates).

Our results on strategy-proofness showed that elicitation can introduce
opportunities for strategic manipulation of the election by the voters—beyond
the manipulation opportunities present without elicitation. This is the case

25

even with coarse elicitation (where a voter’s vote is elicited entirely or not at
all), if a voter can infer how many other voters were elicited before it. We
also showed that if voters cannot infer this, coarse elicitation introduces no
manipulation possibilities. On the other hand, we showed that fine elicita-
tion (where a vote can be elicited partially and incrementally) can introduce
manipulation opportunities even when no voter can infer how many voters
were elicited before it. Finally, we showed that if the fine elicitation queries
are always asked in a fixed order (for a given voter), elicitation introduces
no manipulation opportunities.

Future research includes studying elicitation policies that choose the right
outcome with high probability rather than with certainty. It also includes de-
signing new voting protocols that combine the computational ease of elicita-
tion in the Plurality protocol with the expressiveness of the other protocols.
Finally, it would be interesting to study specific fine elicitation schemes in
more detail, and design elicitation protocols that reveal no information about
how many other agents have been elicited so far.

References

[1] John J. Bartholdi, III and James B. Orlin. Single transferable vote
resists strategic voting. Social Choice and Welfare, 8(4):341-354, 1991.

[2] Craig Boutilier, Ronen Brafman, Christopher Geib, and David Poole. A
constraint-based approach to preference elicitation and decision making.
In AAAI Spring Symposium on Qualitative Decision Theory, 1997.

[3] U Chajewwska, Daphne Koller, and R Parr. Making rational decisions
using adaptive utility elicitation. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 363-369, Austin, TX,
2000.

[4] Wolfram Conen and Tuomas Sandholm. Preference elicitation in combi-
natorial auctions: Extended abstract. In Proceedings of the ACM Con-
ference on Electronic Commerce (ACM-EC), pages 256-259, Tampa,
FL, October 2001. A more detailed description of the algorithmic as-
pects appeared in the IJCAI-2001 Workshop on Economic Agents, Mod-
els, and Mechanisms, pp. 71-80.

26

[5]

[6]

[7]

8]

[11]

[13]

Wolfram Conen and Tuomas Sandholm. Differential-revelation VCG
mechanisms for combinatorial auctions. In AAMAS-02 workshop on
Agent-Mediated Electronic Commerce (AMEC), Bologna, Italy, 2002.

Wolfram Conen and Tuomas Sandholm. Partial-revelation VCG mech-
anism for combinatorial auctions. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), Edmonton, Canada, 2002.

Vincent Conitzer and Tuomas Sandholm. Complexity of manipulating
elections with few candidates. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), Edmonton, Canada, 2002.

Joseph D’Ambrosio and William Birmingham. Preference-directed de-
sign. Artificial Intelligence in Engineering Design, Analysis and Manu-
facturing, 1995.

Carmel Domschlak, Ronen Brafman, and Solomon Shimony. Preference-
based configuration of web page content. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelligence (IJCAI),
pages 1451-1456, Seattle, WA, 2001.

Marek Druzdel and Linda van der Gaag. Elicitation of probabilities for
belief networks: Combining qualitative and quantitative information.

In Proceedings of the Uncertainty in Artificial Intelligence Conference
(UAI), 1995.

Eithan Ephrati. A non-manipulable meeting scheduling system. In
Proc. 13th International Distributed Artificial Intelligence Workshop,
Lake Quinalt, Washington, July 1994. AAAI Press Technical Report
WS-94-02.

Eithan Ephrati and Jeffrey S Rosenschein. The Clarke tax as a consensus
mechanism among automated agents. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 173-178, Anaheim,
CA, 1991.

Eithan Ephrati and Jeffrey S Rosenschein. Multi-agent planning as a
dynamic search for social consensus. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI), pages
423-429, Chambery, France, 1993.

27

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Eithan Ephrati and Jeffrey S Rosenschein. Deriving consensus in multi-
agent systems. Artificial Intelligence, 87(1-2):21-74, 1996.

Eithan Ephrati and Jeffrey S Rosenschein. A heuristic technique for
multi-agent planning. Annals of Mathematics and Artificial Intelligence,
20:13-67, 1997.

Benoit Hudson and Tuomas Sandholm. Effectiveness of preference elici-
tation in combinatorial auctions. In AAMAS-02 workshop on Agent-
Mediated Electronic Commerce (AMEC), Bologna, Italy, 2002. Ex-
tended version: Carnegie Mellon University, Computer Science Depart-
ment, CMU-CS-02-124, March. Also: Stanford Institute for Theoretical
Economics workshop (SITE-02).

Vijay Iyengar, Jon Lee, and Murray Campbell. Q-Eval: Evaluating
multiple attribute items using queries. In Proceedings of the ACM Con-
ference on Electronic Commerce (ACM-EC), pages 144-153, Tampa,
FL, 2001.

Kate Larson and Tuomas Sandholm. Bargaining with limited computa-
tion: Deliberation equilibrium. Artificial Intelligence, 132(2):183-217,
2001. Short early version appeared in the Proceedings of the National
Conference on Artificial Intelligence (AAAI), pp. 48-55, Austin, TX,
2000.

C Papadimitriou. Games against nature. Journal of Computer and
System Sciences, 31:288-301, 1985.

David C Parkes. Optimal auction design for agents with hard valu-
ation problems. In Agent-Mediated Electronic Commerce Workshop at
the International Joint Conference on Artificial Intelligence, Stockholm,
Sweden, 1999.

David C Parkes and Lyle Ungar. Iterative combinatorial auctions: The-

ory and practice. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 74-81, Austin, TX, August 2000.

David C Parkes and Lyle Ungar. Preventing strategic manipulation in
iterative auctions: Proxy-agents and price-adjustment. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 82-89,
Austin, TX, August 2000.

28

23] T L Saaty. The Analytical Hierarchy Process. McGraw Hill, 1980.

[24] Ahti Salo and Raimo H&maéldinen. Preference ratios in multiattribute
evaluation (PRIME): Elicitation and decision procedures under incom-
plete information, 2001.

[25] Tuomas Sandholm. An implementation of the contract net protocol
based on marginal cost calculations. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 256-262, Washington,
D.C., July 1993.

[26] Tuomas Sandholm and Fredrik Ygge. Constructing speculative de-
mand functions in equilibrium markets. Technical Report WUCS-99-
26, Washington University, Department of Computer Science, October
1999. Short early version appeared at the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 632-638, Nagoya, Japan, 1997.

[27] Trey Smith, Tuomas Sandholm, and Reid Simmons. Constructing and
clearing combinatorial exchanges using preference elicitation. In AAAI-
02 workshop on Preferences in AI and CP: Symbolic Approaches, 2002.

28] Ha Vu and Peter Haddawy. Problem-focused incremental elicitation
of multi-attribute utility models. In Proceedings of the Uncertainty in
Artificial Intelligence Conference (UAI), pages 215-222, San Francisco,
CA, 1997.

[29] Ha Vu and Peter Haddawy. Towards case-based preference elicitation:
Similarity measures on preference structures. In Proceedings of the Un-
certainty in Artificial Intelligence Conference (UAI), pages 193-201,
1998.

[30] Michael Wellman. A computational market model for distributed con-
figuration design. In Proc. 12th National Conference on Artificial Intel-
ligence (AAAI-94), pages 401-407, Seattle, WA, July 1994.

[31] Peter R Wurman and Michael P Wellman. AkBA: A progressive,
anonymous-price combinatorial auction. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC), pages 21-29, Min-
neapolis, MN, October 2000.

29

A PSPACE-hardness of elicitation under im-
perfect suspicions

In this section, we demonstrate that if we do not know how the voters will vote
in advance, even stronger measures of computational hardness may apply to
the elicitation problem. Specifically, we show that in this case, elicitation
in the Approval protocol is PSPACE-hard, even with unweighted voters
with uniform elicitation cost. (As in the case where we knew the votes
in advance, this proof may be used as a template for proving PSP.ACE-
hardness of elicitation in other voting protocols, though we will not present
such modifications of the proof here.) At the end of this appendix, we discuss
why we believe that the hardness results for the case where the votes are
known in advance are more interesting.

Since we no longer know the votes in advance, it is no longer appropriate
to phrase the elicitation problem in terms of selecting a subset of the votes.
Rather, we investigate the existence of desirable elicitation trees, that is,
contingency plans (online control policies) for eliciting. Additionally, it is
no longer appropriate to require that we know the outcome with certainty
after eliciting k votes; rather, we require that we know the outcome with
high probability. The precise definition of this extended elicitation problem
follows.

Definition 14 (EFFECTIVE-ELICITATION-WITH-
UNCERTAINTY (EEWU)) We are given a set of voters S; for each voter
s; 1 S, a probability distribution I'; over all possible votes; an integer k; and
a number r (0 < r < 1). We are asked whether there exists a contingency
plan (elicitation tree) for eliciting the votes such that with probability at least
r, we will know the winner of the election after eliciting (at most) k votes.

A general probability distribution I'; may require exponential space to
represent. One way to prevent this is by requiring that the support of each
distribution I'; be polynomial in size. We show hardness even when the
support has size at most 3.1°

10 As before, we do not allow the elicitor to terminate elicitation on the basis of knowledge
of the support of a voter’s distribution (as far as terminating elicitation is concerned, each
unelicited voter can still cast any of all the possible votes). In other words, as in the case
of perfect suspicions, termination is not allowed based on suspicions implying an event has
probability O—rather the elicitor has to be able to produce a certificate to an outsider,

30

In order to demonstrate PSP.ACE-hardness, we reduce from the PSPACE-
complete stochastic satisfiability problem [19].

Definition 15 (STOCHASTIC-SAT (SSAT)) We are given a Boolean
formula ¢ in conjunctive normal form (represented by a set of clauses Cl,
over variables X UY = {x1,%a,...,Tq,y1,Y2,...,Yq}). We play the following
game with nature: we pick a value for x1, subsequently nature randomly picks
a value yi, whereupon we pick a value for xs, after which nature randomly
picks a value for ys, etc., until all variables have a value. We are asked
whether there is a policy (contingency plan) for playing this game such that
the probability of the formula being eventually satisfied is at least %

We are now ready to state our result.

Theorem 16 In the Approval protocol, EEWU is PSPACE-hard (even if no
distribution ranges over more than 3 votes, and the probability of a particular
vote must be either 0, i, %, or1).

Proof: We reduce an arbitrary SSAT instance to the following EEWU in-
stance. We are given a Boolean formula in conjunctive normal form with
a set of clauses Cl, over variables X UY = {x1,29,..., 2 Y1,Y2, ..., Yy}
Let Wi = {wiit1,...,wiq}). Then, let W = U<, Wi. (W consists of the
elements of an upper triangular matrix, without the diagonal.) Now let the
candidate set be C'= {p} UCI U X UW. Let sat(l) be the set of clauses in
C1 that is satisfied by the literal [, e.g., sat(—x;) = {cl € Cl : —x, € cl}.
Let there be the following voters:

o |W|+qg= q(q—2—1) + ¢q voters that approve only p with probability 1;

e For each w;; € W, a voter v, ; that approves C' — W; — {w;;, z;} with
probability 1, for a total of [W| = @ voters;

e For each z;, a voter v,, that approves C' —{z;} — W, — sat(z;) — sat(y;)
with probability 1; C'—{z;} — W, — sat(z;) — sat(—y;) with probability
%; and C' — Cl — x; with probability %, for a total of ¢ voters;

e For each z;, a voter v_,, that approves C' — {z;} — W; — sat(—x;) —
sat(y;) with probability §; C' — {z;} — W; — sat(—z;) — sat(—y;) with
probability i; and C' —Cl—xz; with probability %, for a total of q voters.

proving from the elicited votes that the elicitation is done (when the outsider does not
know anything about the voters).

31

Hence, the total number of voters is 2|W|+3¢ = q(¢+2). Let k = |W|+2¢q =
94t3) Pinally, let 7 = 1 — (1)971.11 We claim that the EEWU instance has
a solution if and only if the SSAT instance has a solution.

First suppose there is a solution to the SSAT instance, that is, a contin-
gency plan for setting the z; such that ¢ will be satisfied with probability
at least % Then consider the following contingency plan for the EEWU
instance:

e First we elicit all the voters that approve only p;

e Then, as long as none of the voters corresponding to the z; or —z; have
turned out to vote according to their third possible vote (the one with
probability %), we follow the contingency plan that solves the SSAT
instance. That is, if the SSAT contingency plan sets x; to true, we
elicit v,, first, otherwise v_,,; then, depending on whether the vote
turned out to not approve sat(y;) or sat(—y;), we say that y; has
been "set” to true or false, respectively; then we look at the SSAT
contingency plan to see how x5 should be set in this case, and elicit v,,
or v_,, accordingly; and so on.

e On the other hand, if voter v,, or voter v_,, turns out to vote accord-
ing to the third possible vote, then from here on we elicit the voters
corresponding to elements of W; (that is, voters vy, ,,...,Vy,,) in
order.

Note that this indeed elicits precisely |W |+ 2¢ = k voters. We now proceed
to analyze the probability that we can terminate elicitation at the end of
this. After eliciting all the voters that approve only p, p will be ahead of the
other candidates by |WW| + ¢ votes. Because everyone always approves p, it
follows that we can terminate elicitation after & elicitations if and only if each
candidate besides p is not approved by at least one of the remaining g elicited
voters. (Because this, and only this, will put p ahead of all other candidates
by at least |W|+q+ 1 votes, and after the k elicitations there are still |IW|4 ¢
voters remaining.) Now, it is easy to verify that the |W| 4 ¢ + ith elicited
vote will not approve x;; also, the |W|+ g+ ith elicited vote will not approve
any of W;, unless this voter casts its third possible vote, in which case each
w;; € W; will remain unapproved by the |W| + ¢ + jth elicited voter, vy, ;.

'Note that even though we are using ¢ in the exponent, our reduction is nevertheless
polynomial in size, since the length of the binary representation of r is linear in q.

32

It follows that the only other candidates that may be approved by all the
remaining q elicited votes are the ones in Cl. There is no possibility that one
of these is approved by all the remaining votes, unless none of the elicited
voters vote according to their third type; this happens with probability (%)q.
Given that this happens, it is easy to show that the |W|+g+ith elicited voter
votes according to its first type with probability % and according to its second
type with probability %; and all of these events are independent. Now we
observe that when we elicit v,, (v_,,), this has the effect of eliminating all the
candidates in sat(z;) (sat(—z;)); and the |W| + ¢ + ith elicited voter voting
according to the first (second) possible vote, which corresponds to ”setting”
y; to true (false), has the effect of eliminating sat(y;) (sat(—y;)). Because, as
long as no elicited voter votes according to its third possible vote, we follow
the contingency plan satisfying the SSAT instance, it follows from the above
that in this setting we eliminate all clauses with probability at least % We
conclude that the probability that we cannot terminate the elicitation after
k elicitations is at most (%)q“, hence the probability of success is at least
1 — (5)%" = r. So there exists a solution to the EEWU instance.

Conversely, suppose there exists a solution to the EEWU instance. Con-
sider a contingency plan that maximizes the probability that we can termi-
nate elicitation after k elicitations. It never hurts to elicit the votes that
approve only p, so we may assume that the contingency plan first elicits all
of these. Also, since eliciting one of the v,, ; reveals no information, by the
principle of least commitment, we may assume that none of the v,, ; is ever
elicited before any of the v,, or any of the v_,,. Finally, we observe that
for each voter (besides the ones that approve only p) there is precisely one
x; that it (with certainty) does not approve; now, because there are only ¢
elicitations left after eliciting the voters that approve only p, and each of the
x; needs to not be approved by at least one more elicited voter in order for
us to be able to terminate, it follows that we will certainly not be able to
terminate if (after eliciting the voters that approve only p) we elicit more
than one voter that does not approve a given z;. Thus we may assume that
the contingency plan never does this.

We now show by induction on j that for j > 0, the |W|+ g + jth elicited
voter must be either v, or v_,;, unless the previously elicited voters have
already eliminated all the elements of Cl. Suppose this is true for all j < J;
we now show it true for all j < J.12 We will suppose the contrary and derive

12Note that the base case with J = 0 is vacuously true.

33

a contradiction. So, we suppose there exists a node in the elicitation tree at
depth |W|+ ¢+ J where not all the elements of C have been eliminated yet,
but the voter elicited here is neither v, , nor v_,,. We know that on the path
from the root to this node, the |W|+ ¢ + ith (1 <i < J) elicited voter was
either v,, or v_,, (the induction assumption applies because obviously, at all
of the nodes on the path to this node there were noneliminated candidates
in Cl as well). We also know that none of these voters cast their third
possible vote, because this would have eliminated all the elements of C1I. It
follows that the elements of U;<;;{z;} UW; have already been eliminated.
We first present an alternative contingency plan from this node onwards,
which does elicit v,, at this node; then we show this alternative contingency
plan performs better, contradicting the optimality of the original contingency
plan. The alternative plan is as follows. As long as none of the voters have
turned out to cast their third possible vote, we choose v,, as the |[W|+g+ jth
elicited voter (for 7 > J). Otherwise, if v,, turned out to cast its third
possible vote, from here on we choose vy, ; as the [W]+ ¢+ jth elicited voter
(for j >). It is easy to see that if one of the v,, (for j > J) casts its third
possible vote, this alternative plan will indeed allow us to terminate after
k votes, and the probability that this occurs (starting at the given node) is
1— (%)quJrl‘

Now we proceed to analyze the original, supposedly optimal plan that
elicits a voter other than v,, and v_,, at the given node. The voter elicited
here cannot be one of those approving only p, since we could assume these
voters are all elicited in the first || + ¢ elicitations. The voter elicited
can also not be one of the v,, ;, for if it is, all the voters elicited after this
will also be from the v,,; (because we could assume none of the v,, , are
ever elicited before any of the v,, or any of the v_,,), the noneliminated
elements of C will thus never be eliminated, and we will certainly not be
able to terminate after k elicitations. This conflicts with the optimality of
the plan because the alternative contingency plan we presented did allow us
to terminate after k elicitations with nonzero probability. Hence, the elicited
voter must be some v, or v_,, with « # J. But it cannot be the case that
¢ < J, because in this case we have already elicited one of v,, and v_,,
(by the induction assumption); and eliciting the other as well would conflict
with the assumption we could make that the contingency plan never elicits
more than one voter that does not approve a given x; (after eliciting the
voters that approve only p). So ¢ > J. Now consider the candidate w,;,
which we still need to eliminate. We cannot elicit vy, to eliminate this

34

candidate, because eliciting both this voter and one of v,, and v_,, conflicts
with the assumption we could make that the contingency plan never elicits
more than one voter that does not approve a given z;. It follows that the
only voters that we might elicit to eliminate w;; are v,, and v_,, (but, by
the same assumption again, at most one of them). Because with probability
% such a voter will cast its third possible vote, which will not eliminate w;,
we will terminate with probability at most % But the alternative strategy
terminates with probability at least 1 — (3)7"/*! > 3 (the inequality follows
from the fact that ¢ >4 > J), and thus the original strategy is not optimal.
(Contradiction.)

It follows that we can make the part of the contingency plan where no
voter has cast its third possible vote correspond to a contingency plan for
the SSAT instance: when voter v,, (v_,,) is elicited, z; is set to true (false),
and when this voter responds to eliminate sat(y;) (sat(—y;)), y; is set to
true (false). We claim this contingency plan is in fact a solution to the
SSAT instance. For with probability (3)?, no elicited voter will cast its third
possible vote; and, because by assumption, we can eventually terminate with
probability at least 1 — (3)7*!, it must be the case that given that this
happens, we can still terminate with probability at least % But, given that
no elicited voter casts its third possible vote, we can terminate elicitation if
and only if all elements of C! are eliminated (which in turn happens if and
only if in the corresponding event in the SSAT instance, all the clauses are
satisfied). So there exists a solution to the SSAT instance.

Although PSPACE-hardness is a stronger claim than NP-hardness, 1)
both are worst-case measures, 2) with the current state of knowledge in
computational complexity, both seem intractable, and 3) PSP.ACE-hardness
implies nothing more about inapproximability than NP-hardness. On the
other hand, we believe that showing that effective elicitation is hard even
with perfect suspicions about how the voters will vote is very significant.
Thus, we prefer the NP-hardness results for the case where the elicitor has
perfect suspicions about the votes, to PSP.ACE-hardness results for the more
general case of imperfect suspicions.

35

