
1

Recitation 1:
Intro & Revision Control

Dave Andersen
CMU Computer Science

Fall 2006

Systems Software

• Low-level (projects in C)
• Designed to run forever

– Handle every possible error condition
– Manage resources carefully

• Must be secure!
– The Internet is not a friendly place

• Based on documented protocols

Quite different from 213

• Project size: 1000s of lines vs 100s.
• Project duration: 5 weeks vs 1-2 weeks
• Partners vs. solo developer
• Result:

– You can’t keep the “state” for 441 projects
in your head at all times. It’s too big!

– Requires one step more care in
development.

Software Engineering
For Systems Hackers

• Goals and foundations:
– 1-5 developers
– Context: Systems code, but not too much

is systems specific
– Very low overhead and up-front cost

• Like to see benefits w/in a single project

Our Philosophy

• Your time is valuable and limited
• Some things are fun:

– Design, initial coding, a working project
• Some things are less fun:

– Agonizing debugging, bad project grades,
spending 10x longer than you thought

• Use techniques that minimize time and
maximize fun vs less fun.

Partly-free lunch
• Techniques take a bit of time to learn

– E.g., revision control software (today)
– But they will pay off!

• Some techniques take a bit more up-front
time
– E.g., writing good log messages, thinking about

design, good debugging capabilities
– But they make the rest of the project more

predictable and reduce the uncertainty of failing in
the last day.

– (And they save debugging time).

2

Your job

• Ask yourself: “Could I be doing this in a
more efficient way?”
– Typing “gcc –g –Wall foo.c bar.c baz.c”

vs typing “make”
• Debugging: “Have I seen this bug

before? What caused it? How could I
avoid it?”
– Be reflective; strive to learn & improve.

In Practice: Algorithms

• Most systems programs need:
– Hashes, linked lists
– Searching and sorting

• For many, that’s it.
– (Databases are different)

• Given this,
– What would a good, lazy programmer do?

Don’t write it twice

• Hashes/lists: Have a nice
implementation that you reuse.
– We suggest either the ones from

• “The Practice of Programming”
• Or rip them out of the BSD kernel
• This is perfectly acceptable in 441

• Sorting: Don’t write at all!
– C library “qsort” (heap, merge…)

Don’t prematurely optimize

• If it ain’t slow, don’t break it
• Keep your programs simple

– Easier to write
– Easier to debug

• But make it easy to change
implementation details
– Modularity! (Later lecture)

Optimizing your time

• Sorting 3 numbers: Do it by hand
• Sorting 3000 numbers: Do it in ruby
• Sorting 300,000,000,000 numbers:

Write some serious code
• Mental calculation

– Time spent doing task
– Time spent automating/optimizing
– Will you have to do this again?

Overview

• Today: Intro & Revision Control
– Managing your source code wisely

• Makefiles and automation 1
– Automate the boring stuff!

• Design: Modularity and Testability
– Managing 1000 LoC != 100 LoC

• Debugging: Techniques & Tools
• Automation 2: Scripting

3

Resources

• Some great books:
– The Pragmatic Programmer
– The Practice of Programming
– Writing Solid Code

• Recitation notes:
– http://www.cs.cmu.edu/~dga/systems-se.pdf
– Please don’t redistribute: They’re very

preliminary!

Recitation Mechanics
• 1) These are your recitations.

– We’ve got a schedule. It’s flexible.
– Ask questions, make comments, …
– 1 part lecture, 1 part “public office hours” (homework

questions? Sure! Project questions? Great!)
• 2) These aren’t the final answers

– Recitations culled from our experience, other faculty, friends
in industry, books, etc.

– We’re always looking for better ideas/tools/practices/etc. If
you have some, please share.

Revision Control

• Before you write a line of code…
• Use subversion/CVS/etc.
• Provides access to all old versions of

your code
– No more “cp file.c file.c.2006-01-01-

1059am-oh-god-please-let-this-work”

What is revision control?

• A repository that stores each version
• You explicitly “check out” and “check in” code

and changes.
• 597 bark:~/tmp> svn checkout

https://moo.cmcl.cs.cmu.edu/svn/systems-se

 A systems-se/related.tex

 A systems-se/acks.tex

 A systems-se/tinylang.tex

 A systems-se/emacs.tex

 ….

Why do I want it?

• Super-undo: Go to arbitrary versions
– rm –rf your source tree? No problem!

• Tracking changes /“why did this break?”
• Concurrent development
• Snapshots

– Turning in the assignment: just make a snapshot
when you want, and we’ll grade that. You can
keep developing afterwords.

– Useful, e.g., for optimization contest, or for making
sure you have something working.

You’ve sold me. What should I
know about it?

4

The repository

• Master copy of code is separate from
what you work on

• You can
have multiple
working copies
checked out.
(So can your partner)

Repository

Your working copy

Partner working copy

Laptop working copy

Check out and commit

• Explicitly synchronize with the
repository

Repository

Your working copy

Checkout
/ Update

Commit

First
Version

Older
Version 2

Older
Version 1

Every revision is available

Current
version

And you can see what changed

Revision control lets you note (and then see) what you changed:

> svn log gtcd.cc
r986 | ntolia | 2006-08-01 17:13:38 -0400 (Tue, 01 Aug 2006) | 6 lines

This allows the sp to get rid of chunks early before a transfer is
complete.

Useful when a file is requested in-order and the file size > mem cache
size

And makes it easy to go back to other versions:

r987 | ntolia | 2006-08-02 13:16:21 -0400 (Wed, 02 Aug 2006) | 1 line

After much thought, I am reverting the last patch. We will need to
revisit the

issue when we think about DOT on storage-limited clients

Concurrent Development

• Each person checks out a copy
• Both can work at the same time without

(much) fear of clobbering the other
– Changes only visible on commit/update

• What if both people edit the same file
and commit it?

Concurrent edits
Ann DrewFile v1

Both check out file

Edits (ann-1)

File v2

Edits (drew-1)
Different part
of same filecommit

Update

Successfully merged

5

Concurrent edits
Ann DrewFile v1

Both check out file

Edits (ann-1)

File v2

Edits (drew-1)
Overlap with
ann-1commit

Update

(CONFLICT)

Resolving Conflicts

• Subversion will give you 3 files:
– The original with conflict markers
– The version you were editing
– The latest version in the repository

• You can:
– Keep your changes, discarding others
– Toss your changes
– Manually resolve

Branches

• Multiple paths of development, e.g.
– Release 1.0 only gets security patches
– “Development” branch gets everything

• “tags” or “snapshots”
– Save a good known state. E.g., for

handing in.
• Issue of merging (read on your own)

Subversion (see handout)
• svn checkout https://moo.cmcl.cs.cmu.edu/441/..

• svn commit

• svn update

• svn add

• svn mkdir

• svn copy: create a branch or snapshot

• svn diff: See difference between versions
by default: between what you started on and
where you are now

Brief walkthrough
> svn checkout https://moo.cmcl.cs.cmu.edu/svn/systems-

se
 A systems-se/acks.tex
 …
> cd systems-se
> echo “new file” >> test.txt
> svn add test.txt

 A test.txt
> svn commit
[svn will open an editor for log message]

Adding test.txt

Transmitting file data ..

Committed revision 21.

Thoughts on Revision Control
• Update, make, test, then commit
• Update out of habit before you start editing
• Merge often
• Commit format changes separately
• Check svn diff before committing
• Try not to break the checked in copy

– Invasive changes? Maybe a branch
• Don’t use svn lock
• Avoid conflicts by good decomposition (modularity)

and out-of-band coordination

6

Go forth and revise!

• Revision control will save you untold pain
– Most people I know have accidentally nuked files

or entire directories
– Logs and diffs very useful for finding bugs
– Much better way to coordinate with partners (but

useful on your own! I use it for almost everything)

• Very small investment to learn
• Try it on your own!
• Read the SVN book online for more info

