Systems Dev. Tutorial IV:

Debugging: Tips and Tools

15-441 Recitation

Wednesday, Sept 27th, 2006

Overview

What is debugging?
Strategies to live (or at least code) by.
Tools of the trade

gdb

smart logging

electric fence

ethereal/tcpdump

What is debugging?

You tell me! Everybody writes codes with bugs.

What debugging have you needed to do already on
the IRC project?

Things to think about:
- What caused the bug?
- How did you end up finding it?
- How could you have avoided the bug in the first-
place?

Debugging Philosophy

Guiding Steps:

Coder: code
will produce,
output X ...

1) Think about why you

believe the program should
Computer:
code will

produce Z....

produce the output you
expected.

2) Make assertions until
you understand how your

view differs from the
computer’s.

Requirements for Debugging

WHAT program behavior to look for?

Sometimes this is nearly free.... (e.g., compiler
error, or segfault)

Sometimes it is the hardest part.... (e.g., logic
bugs, race conditions)

How to easily expose information to test hypothesis?
gdb, logging, strace, ethereal....

Strategies to Live By...

Debugging is part
art, part science.

You'll improve with experience....

... but we can try to give you a jump-start!

surategy #1: Debug with Purpose

Don't just change code and “hope” you'll fix the problem!

Instead, make the bug reproducible, then use
methodical “Hypothesis Testing”:
While(bug) {
Ask, what is the simplest input that produces the bug?

Identify assumptions that you made about program operation
that could be false.

Ask yourself “How does the outcome of this test/change guide
me toward finding the problem?”

Use pen & paper to stay organized!

Strategy #2: EXplain it to Someone Else

Often explaining the bug to “someone” unfamiliar
with the program forces you to look at the problem
in a different way.

Before you actually email the TA’s:

Write an email to convince them that you have
eliminated all possible explanations....

strategy #3: Focus on Recent
Changes

strategy #4: When in dOllbt, dump
state

If you find a NEW bug, ask:
what code did | change recently?

This favors:

- writing and testing code incrementally

- using 'svn diff' to see recent changes

- regression testing (making sure new changes
don't break old code).

In complex programs, reasoning about where
the bug is can be hard, and stepping through in
a debugger time-consuming.

Sometimes its easier to just “dump state” and
scan through for what seems “odd” to zero in
on the problem.

Example:
Dumping all packets using tcpdump.

strategy #5: Get some distance...

strategy #6: Let others work for y01l!

Sometimes, you can be TOO CLOSE to the
code to see the problem.

Go for a run, take a shower, whatever relaxes
you but let's your mind continue to spin in the
background.

Sometimes, error detecting tools make certain
bugs easy to find. We just have to use them.

Electric Fence or Valgrind:
runtime tools to detect memory errors

Extra GCC flags to statically catch errors:
-Wall, -Wextra, -Wshadow, -Wunreachable-code

Strategy #7: Think Ahead

Tools of the Trade

Bugs often represent your misunderstanding
of a software interface.

Once you've fixed a bug:

1) Smile and do a little victory dance....

2) Think about if the bug you fixed might
manifest itself elsewhere in your code
(a quick grep can help).

3) Think about how to avoid this bug in the
future

(maybe coding 36 straight hours before the
deadline isn't the most efficient approach....)

Different bugs require different tools:

1) Program crashes with segfault
-> gdb

2) Hard to reproduce or highly complex bugs
-> logging & analysis

3) Program hangs waiting for network traffic
-> tcpdump / ethereal

GDB: Learn to Love it

GDB Commands

Run a program, see where it crashes, or stop
it in the middle of running to examine program
state.

Two ways to run:
gdb binary (to run binary inside of gdb)
gdb binary core-file (to debug crashed program)

Controlling Execution Getting Info

GDB Tricks & Tips

run <cmd-line args> backtrace

break <func> print <expr>

step info locals

next list

control-c up/down
Smart Logging

See handout for detailed explanations, and
abbreviations

Remember: always compile with -g, and no
optimizations.

If your not getting core files, type:
‘unlimit coredumpsize’

You can use GDB in emacs! (see slides at end)

Use a debug macro that you can easily turn off
to suppress output just by changing one line.

(example posted online)

Often smart to create generic log functions like
dumplRCMessage() or dumpRoutingPacket()

A tool like 'strace’ or 'ktrace' may be able to log
easily read information for free!

Electric Fence

Adds run-time checks to your program to
find errors related to malloc.

e.g.: writing out of bounds, use after free...

just compile your programs using -lefence

Alternative: Valgrind finds more memory
errors, but is VERY slow.

tcpdump & ethereal

Helps you understand what is happening
“below” your networking code.

Benefits

Often will automatically parse well known
protocols for you! (like, say... IRC)

Accept filters to ignore unimportant packets
Downsides
Need root access

That’s It!

Questions?

Feedback from Checkpoint 2?

Using GDB in Emacs

The commands/keystrokes to make it happen:

. Compile with -g and *NO* -O2 or -O3

build with a "make"

emacs sircd.c (or any other source file)

CTRL+x and then '3' (open a right frame)

CTRL+x and then 'o' (switch cursor to right frame)

ESC+x and then "gdb" and hit enter

Type in the name of your binary *only*, like "sircd" and hit enter

© N oA D

Set any break points you want, then type "run params ...", for
example "run 1 node1.conf" and hit enter
9. Use GDB with your code!! (next, step, print, display...)

GDB in Emacs

Note the arrow in the left source file window shows the line being executed!

