タグ

deeplearningに関するakiyanのブックマーク (12)

  • 1987年に手動でディープラーニングをしていた驚異の麻雀ゲームがあった──アキバ通いのパソコン少年がゲーム アーツを創業──宮路洋一氏にゲームAIの核を聞く【聞き手:三宅陽一郎】

    じつは1980年代の“国内ゲームAI史”は、これまでまったくの暗黒大陸と化していた。そんなところに発見されたその資料は、驚くべきことに──いまAI研究の最先端にいる開発者から見てもまったく色褪せない歴史的な完成度であるという。 この“早すぎる”麻雀の“ゲームAI”は、はたしてどう生み出されたのだろうか? この奇跡ともいえる仕様書を作った人物は、ゲームソフト制作会社ゲームアーツを立ち上げ、その後『LUNAR』、『グランディア』シリーズや『機動戦士ガンダム ギレンの野望』のプロデュース、そして『大乱闘スマッシュブラザーズX』の開発プロデュースなども手がけた宮路洋一氏だ。 宮路洋一氏 当時、23歳の若者だった氏が作り上げた“麻雀AI”完成度の高さの舞台裏には──じつに1年半にわたる、途方もない回数のテストプレイの日々があったという。 「いつのまにかAIになっていた」、「いま思うと手動でディープラ

    1987年に手動でディープラーニングをしていた驚異の麻雀ゲームがあった──アキバ通いのパソコン少年がゲーム アーツを創業──宮路洋一氏にゲームAIの核を聞く【聞き手:三宅陽一郎】
  • 初心者がchainerで線画着色してみた。わりとできた。

    デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出

    初心者がchainerで線画着色してみた。わりとできた。
  • 畳み込みニューラルネットワークの仕組み | POSTD

    (編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明

    畳み込みニューラルネットワークの仕組み | POSTD
  • そのモデル、過学習してるの?未学習なの?と困ったら - once upon a time,

    移転しました。 https://chezo.uno/post/2016-05-29-sonomoderu-guo-xue-xi-siteruno-wei-xue-xi-nano-tokun-tutara/

    そのモデル、過学習してるの?未学習なの?と困ったら - once upon a time,
    akiyan
    akiyan 2016/05/31
    わかりやっす!
  • Cloud Vision APIの画像認識精度を試してみた

    こんにちは。制作部フロントエンジニアの苅部です。 GoogleからCloud Vision APIの提供が始まっていたので、スマートフォンのカメラから利用できるモック画面を作って、APIの画像認識精度を試してみました。 簡単ではありますが、HerokuでのNode.js利用のおさらいと、実際にいくつかの画像を送信した結果を共有できたらと思います。 (Cloud Vision APIは2/18日に公開ベータになっています) Cloud Vision APIとはGoogleフォトやSafeSearchで採用されている、Google機械学習の画像認識APIです。 画像を載せてAPIコールすることで以下の情報の取得が可能です。 物体検知OCR有害コンテンツ検知顔検知ロゴ検知ランドマーク検知HerokuでのNode.js利用までの流れAPIKEY取得からAPIコールおよび画面実装までの流れをご説明

    Cloud Vision APIの画像認識精度を試してみた
  • Distributed TensorFlowの話 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Hadoop Conference Japan 2016 もともとは2月8日に開催されるHadoop Conference Japan 2016のセッションとしてこの話を応募したのですが、あえなく落選しました……(;_;) しかし、ありがたいことに復活戦のLightning Talkの投票では5位に選んでいただき、ランチタイムA会場でお話することになりました。ありがとうございます! 今回のスライドはここで公開しています。 とはいえ、5分のLTではこの内容をしっかりと伝えられる自信がないので、以下でスライド内容の詳しい解説をしたいと思いま

    Distributed TensorFlowの話 - Qiita
  • TensorFlowをMacで試す | 俺のメモ

    TensorFlowでましたね。胸熱な感じです。 難しい言葉が溢れる中、これ一発でディープラーニングがキャズムを超えるとは思わないけど、とりあえず使ってみました。 Macに入れて、サンプル動かしたかっただけなのに色んなトラップが仕掛けられてます。 とりあえずインストール $ pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl tensorflow-0.5.0-py2-none-any.whl is not a supported wheel on this platform. はい、こけました。 公式のチュートリアル2行目に書いてますが、Python3系では動かず、Python2.7系でしか動きません。 気を取り直しpyenvで2.7に切り替え再度インストール

    TensorFlowをMacで試す | 俺のメモ
  • 【TensorFlow】Mac OSX El Capitan で TensorFlow に入門してみる

    今回は、人工知能関連のテーマです。 Google機械学習フレームワーク TensorFlow に触れてみようと思います。 プロローグ 人工知能の分野が盛り上がりを見せるなか、世界の名だたる研究機関やIT企業から様々な機械学習ツールがオープンソースで提供されるようになりました。これを使えば、自分にも機械学習を扱えるはず! と思いたち、Facebook の Torch 7 という機械学習フレームワークにチャレンジしたことがあります。が、チュートリアルまでやってみたところで、何が動いたのかまったく理解できず・・・あえなく挫折しました。 まだまだ素人には難しいか・・・とか思ってしょんぼりしていたのですが、それからしばらくして、世の中には日語の情報も増えてきた様子。今度こそ自分でもできるかも! と期待に胸が震えたわけです。 今回 TensorFlow にチャレンジしようと思ったきっかけを与えて

  • 画風を変換するアルゴリズム - Preferred Networks Research & Development

    Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま

    画風を変換するアルゴリズム - Preferred Networks Research & Development
  • 【ディープラーニング】ChainerでAutoencoderを試して結果を可視化してみる。 - Qiita

    ChainerでAutoencoderを試してみる記事です。前回の記事、「【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。」の続きとなります。ディープラーニングの事前学習にも使われる技術ですね。 記事で使用したコードはコチラから取得できます。 1.最初に# AutoencoderとはAuto(自己) encode(符号化)er(器)で、データを2層のニューラルネットに通して、自分自身のデータと一致する出力がされるようパラメーターを学習させるものです。データだけあれば良いので、分類的には教師なし学習になります。 学習フェーズ こんなことをして何が嬉しいのかというと、 入力に合わせたパラメーター$w_{ji}$を設定できる。(入力データの特徴を抽出できる) その入力に合わせたパラメーターを使うことでディープなニューラルネットでの学習を可能にする(ランダム

    【ディープラーニング】ChainerでAutoencoderを試して結果を可視化してみる。 - Qiita
  • Hello Autoencoder — KiyuHub

    Hello Autoencoder 最近,身内でDeep Learningを題材に含んだ勉強会を行なっている. メインは専門である自然言語処理まわりだが, とりあえず実装(というよりnumpy)の導入になる上,結果を視覚化できることから, 画像データを利用したAutoencoderの実装について取り扱った. 軽い説明と共にコードと,色々な結果を Autoencoder Autoencoderとは,Neural Networkの特殊系で,基的には 入力層と出力層のユニット数が同じである. 教師信号として入力そのものを与える. という特徴を持つ. 入力と出力が共に4次元で,隠れ層が2次元なAutoencoderの図 Autoencoderは,入力の情報をを一度隠れ層の空間に写像(encode) したあと, 元の信号を復元(decode)するようなパラメータを学習する. 図のように,もしも隠れ

  • はじめるDeep learning - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを

    はじめるDeep learning - Qiita
  • 1