Google Cloud Champion Innovators Advent Calendar 2024 の 12 日目の記事です。 はじめに LLM が広く普及し、活用範囲が急速に拡大してきたことで、ツール連携機能を活用した AI エージェントを構築する機会も増えてきています。このような LLM とツールの連携により、チャットインターフェースから様々なシステムやサービスを制御・自動化できるようになりました。 しかし、AI エージェントの開発には2つの困りごとがあると感じています。1つ目は、複雑な指示を処理するために必要な高性能モデルの応答速度が遅い点、2つ目は複数のプロジェクトでツールを再利用する際の実装効率の問題です。 本記事では、これらに対する解決策の一例を紹介します。LLM から BigQuery を操作するユースケースにおいて、応答速度が遅い点については Gemini 2.0
導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 本記事では、Pinterest社のエンジニアチームが紹介していた、実運用環境におけるText-to-SQLの構築方法に関する記事の紹介をします。 Text-to-SQLを実際の運用レベルで実現するための手法が解説されているので、その内容を解説、そして考察していきたいと思います。 なおこの手法には特に名前などは設定されていなかったので、以降Pinterest社の提案するText-to-SQLをPinterest Text-to-SQLと呼称します。 サマリー Pinterest Text-to-SQLは、RAGのシステムを最適化することで 検索に必要なTableのより正確な抽出 実際に使用されている値に準拠
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く