ゲームをする側から作る側へ。 どうせ作るなら本気で行こう。 「ゲームつくろー」のコンセプトは「目指せ大規模本格ゲーム」 そして、目指せ出版(笑)
For more than 20 years, Havok has enabled leading game developers across all platforms to create experiences that are rich, robust, and realistic. Today, more than half of the best-selling games are using Havok technology and our partners continue to push the limits of gaming, bringing players more immersion, more thrills, and more fun. Find out what your team can do with Havok Havok is here to en
検索 ポーカーゲームの作り方 ゲームの流れ[2002/09/07] 山を作る[2002/09/07] 役を判定する[2002/09/07] 勝敗判定[2002/09/07] コンピューターの思考ルーチン[2002/09/07] 3Dダンジョンの作り方 相対座標と絶対座標[2002/09/07] 3Dな画像の表示方法[2002/09/07] 戦術SLGの作り方 移動範囲の求め方[2004/06/27] コンピュータの思考ルーチン[2004/07/04] コンピュータの思考ルーチン2[2004/11/28] 戦術型SLGのゲームバランス[2005/09/04] ブレゼンハムの線分描画アルゴリズム[2005/09/10] A*による経路探索[2005/09/10] 麻雀の作り方 あがり判定[2004/07/11] 役判定[2004/07/19] コンピュータの思考アルゴリズム(準備中) シューテ
Windowsのフレームバッファ「デバイス独立ビットマップ(DIB)」による画像処理とWave音源による音声信号処理の実験室です。 グラフィック処理 Windowsのフレームバッファ(DIB)機能を利用して、画像処理で遊んでみましょう。単純な計算で色成分を変えてやることで、画像が文字通り「見違える」のは、なかなか楽しいものです。 画像処理プログラムは、大きめの画面で実行した方が「画像処理の効果」を確認しやすくなります。 サンプルソースは、C言語とWin32APIの組み合わせで記述していますが、HTML5(JavaScriptとCanvas要素)などでも同様の考え方で画像処理を行うことができます。 モノクロ(単一色)階調表現への変換(1999/10/ 6) モザイクをかけてみる(1999/10/ 6) カラーテーブルで色を変える(1999/10/ 6) 抜き色による透過イメージ(スプライト)
図目次1-1. すべての部屋が通路でつながっていない例1-2. まずは全体がrect[0]です。1-3. rect[0]を、分割します。rect[0]とrect[1]ができました。1-4. rect[0]を、分割します。rect[0]とrect[2]ができました。1-5. rect[2]を、分割します。rect[2]とrect[3]ができました。1-6. 各区画にひとつずつ部屋を作ります。1-7. 各分割線ごとに部屋を通路でつなぎます。1-8. まずは全体がrect[0]です。1-9. rect[0]を、横に分割します。rect[0]とrect[1]ができました。1-10. rect[0]を、横に分割します。rect[0]とrect[2]ができました。1-11. rect[2]をまたぐことになり、困ります。1-12. このように賢く分割するようにしてもいいです。2-1. タスクのイメージ。
Webページの自動カテゴライズ の続き。 前回書いたとおり、パストラックで行っている Web ページのカテゴライズでは、Web ページの本文抽出がひとつの鍵になっています。今回はその本文抽出モジュールを公開しつつ、使っている技法をざっくり解説などしてみます。 本モジュールの利用は至極簡単。require して analyse メソッドに解析したい html を与えるだけ。文字コードは UTF-8 です。 【追記】大事なこと書き忘れ。本モジュールは Ruby1.8.5 で動作確認していますが、特別なことはしていないので、1.8.x なら動くと思います。 $KCODE="u" # 文字コードは utf-8 require 'extractcontent.rb' # オプション値の指定 opt = {:waste_expressions => /お問い合わせ|会社概要/} ExtractCont
クラスタリング (clustering) とは,分類対象の集合を,内的結合 (internal cohesion) と外的分離 (external isolation) が達成されるような部分集合に分割すること [Everitt 93, 大橋 85] です.統計解析や多変量解析の分野ではクラスター分析 (cluster analysis) とも呼ばれ,基本的なデータ解析手法としてデータマイニングでも頻繁に利用されています. 分割後の各部分集合はクラスタと呼ばれます.分割の方法にも幾つかの種類があり,全ての分類対象がちょうど一つだけのクラスタの要素となる場合(ハードなもしくは,クリスプなクラスタといいます)や,逆に一つのクラスタが複数のクラスタに同時に部分的に所属する場合(ソフト,または,ファジィなクラスタといいます)があります.ここでは前者のハードな場合のクラスタリングについて述べます.
ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の
高校生の時、数学の先生がこう言いました。 ゲームなんて、開発者が作ったルールの上で遊ばれるだけだ。 と。 その時、ゲーマーな自分はこう思いました。 ゲーマーは、開発者が作ったルールの上で遊ばれたい。 と。 というわけで、普段何気なくプレイしているゲームには、どのようなルール(アルゴリズム)があるのか。それを知るために、いろいろなゲームのアルゴリズムなどを解析しているページへのリンク集を作りました。 ほとんどのゲームのアルゴリズムは正式に発表されていないので、ユーザーの手による逆解析だったり、大学の研究による真面目な考察だったりします。(リンク先には、一部アルゴリズムと呼べないものも含まれています) 各種ゲームのプログラム解析 ドラクエ、FF、ロマサガのプログラム解析 DQ調査報告書(リンク切れ) ドラクエの物理ダメージ計算式は本質的にどれも同じだが、細かい部分で微妙に違う RPG INST
シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを
集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ
ちょっとした実験をしてみました。芸能人の相関関係を機械的に探索してみます。 具体的には「○○というタレントと関係が深い芸能人は?」といった、芸能人にフォーカスした類似検索みたいな実験です。 技術的には「潜在的意味インデキシング」(Latent Semantic Indexing)といった手法を使います。 これは普通は自然言語処理の世界で使われるテクニックですが、なにも言語だけでなく他のデータ素材でも面白い結果が得られるかもしれないので、やってみようという試みです。 以下に大まかな手順をまとめます。 wikipedia から有名人のリストを抽出 それらの有名人リストについて、一人ずつ「誰と関連が深いか」を集計。具体的には有名人個々のwikipediaのページ中に、先ほど抽出しておいた人名リストとマッチする人名がどれだけ掲載されているかをピックアップしていきます。 上記の方法で有名人の間の相関
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く