
Hadoopはほんとブームです。バブルだと言っていい気がします。各種セミナーはすぐに埋まりますし、実際に聞きに行くと会場は満員です。 この分野は日本だとNTTデータが先頭をきったように見えます。 NTTデータ、Hadoopの商用ディストリビューション「CDH3」を販売開始 | 日経 xTECH(クロステック) またHadoop専業会社「ノーチラス・テクノロジー」というのもできました。 ウルシステムズとイーシー・ワンが経営統合、Hadoop専業会社を立ち上げ | 日経 xTECH(クロステック) しかし最近では富士通やIBMもHadoopソリューションを展開しておりレッドオーシャンな感じです。 富士通がビッグデータ分析・活用向けのPaaSサービス | 日経 xTECH(クロステック) 日本IBM、表計算のように分析できるHadoopソフト新版「BigInsights」 | 日経 xTECH(
ビッグデータを征す クラウドの技術 Hadoop&NoSQL 発売は既に2週前ですがムック「ビッグデータを征す クラウドの技術 Hadoop&NoSQL」が出ました。以下の過去のASCII.technologies誌の記事がそのまま載っています。 HBaseの特集記事 MapReduce(PigとHive) 新規の書き下ろし記事も書きました。タイトルは「NoSQLとはなにか?」です。 パーティショニング(シャーディング)とレプリケーションのふたつの側面に注目してNoSQLを解説しました。合わせてCAP定理も説明しました。CAP定理の解説記事は、特にWeb上で初期の頃に書かれた記事は、微妙にごまかされた気分になるものがあります。たとえばCAPのPは分散を意味するので外せない、だからCとAのどちらを取るかを決めなければいけない、などと説明されても納得できません。少なくとも自分はこういう説明に納
筆者らは、オープンソースソフトウエアの分散処理ミドルウエア「Hadoop」を、基幹系のバッチ処理システムに適用するためのフレームワーク「Asakusa」を開発した。AsakusaはHadoopと同様に、オープンソースソフトウエアとして公開する。公開日は、本連載の4回目をお届けする2011年3月31日の予定である。 Asakusaを使うことでHadoopによる分散処理のメリットを享受することが可能となり、これまでRDBMSを利用していた場合と比べて、多くのケースでバッチ処理システムの性能を大幅に向上することができる。筆者らが実際に構築を支援したシステムでは、それまで4時間かかっていた処理が数分で終わるようなケースも出てきている。 盛んに報道されているように、Hadoopはすでに多くの導入実績がある。ただしその用途は、ログ分析システムやレコメンデーションエンジンなどのビジネスインテリジェンス(
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 2011/02/22 [登壇後エントリ] :" 「モバゲーの大規模データマイニング基盤におけるHadoop活用」-Hadoop Conference Japan 2011 #hcj2011 で登壇してきました " http://d.hatena.ne.jp/hamadakoichi/20110222/p1Read less
もうこの手の話題は出尽くした感がありますが、最近Hadoopについて考えることが多いので、エントリにしてみます。なお、ここではベーシックなMapReduce+HDFSのことをHadoopと呼ぶことにします。 HadoopとはHadoopとは言わずと知れたGoogleのMapReduce/GFSのオープンソースのクローンです。MapReduceではプログラマはMapとReduceという2つの関数を書くだけで、並列分散処理をすることができます。これは(1) データを実際に持つマシンにプログラムを配布する (2) MapとReduceをつなぐShuffleフェーズでキーをグループ化してソートする、(3) 障害時のフェールオーバーやレプリケーション、といった処理をフレームワーク側が受け持つことによって、プログラマ側の負担を減らすものです。GFSに対応するHDFSにはファイルをクラスタに分散して保存
This document describes code for a data sucka tool that retrieves crisis data from multiple sources including Ushahidi, ReliefWeb, and GDELT, transforms it into a common format, and returns the data. The code defines classes for each data source that implement functions for retrieving data from the source's API, transforming it to match a CrisisNET schema, and returning the data. It retrieves data
先週10月12日に、ニューヨークでHadoopのイベント「Hadoop World: NYC 2010」が開催されました。主催はHadoopのディストリビューションベンダであるCloudera。参加者は900名を超えたともいわれ、日本からも30名程度が参加しました。 このイベントでClouderaはNTTデータとの提携を発表。両社でアジア太平洋地域と日本でのHadoopビジネスを積極展開することを明らかにしています。NTTデータによる講演のなかでリクルートの米谷修氏が行ったHadoopに関する比較評価を紹介します。 この記事はHadoop WorldでClouderaと提携したNTTデータが目指すもの。Hadoop World: NYC 2010」の続きです。 3種類のデータベースとHadoopを比較 リクルート MIT United システム基盤室エグゼクティブマネージャー 米谷修氏。
gumiの粟飯原です。 データマイニングやってます。しかしながら最近はあまりデータをいじる時間がなく社内でプレゼンばかりする日々で、社内でも私がなにやってるのかわからないというもっぱらの評判。そこで今回は一応データ解析もやってはいるんだよということを内外に主張するためにもデータマイニングの話をしようと思います。 アプリの基本的な日々の統計データ取得などは別の方々はやられているので、私からはhadoopを使った大規模解析の話や、そこで得られたデータを分析する環境の話をしたいと思います。コードを併記した具体例などは今回載せられないのですが、今後また紹介していければと思います。 大規模データの解析 日々のログ解析やDB解析はcronによる処理で毎朝レポーティングを行っているのですが、新しい情報を過去のアクセスログからまとめてどかんと取得したいと言う時はHadoopによる大規模解析を実行しています
業界トップ のエンタープライズ Hadoop 企業 Cloudera に入社しました http://www.cloudera.co.jp/ 今年の6月に、「平成21年度 産学連携ソフトウェア工学実践事業報告書」というドキュメント群が経産省から公表されました。 そのうちの一つに、NTTデータに委託されたHadoopに関する実証実験の報告書がありましたので、今更ながら読んでみることにしました。 Hadoop界隈の人はもうみんなとっくに読んでるのかもしれませんけど。 http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf 「高信頼クラウド実現用ソフトウェア開発(分散制御処理技術等に係るデータセンター高信頼化に向けた実証事業)」という
前回に引き続き、井上が書かせていただきます。 GREE Studio 2010 5日目の講義内容はデータマイニングエンジニア、moritaさんによる「データマイニング」。業務のログ解析において用いられるデータマイニングの内容です。前回はレポート形式でしたが、今回はもう少しエンジニアリングブログに近い形で書こうと思って頑張りました。宜しくお願いします。今回のブログの内容は、 データマイニングの基礎知識 大規模データへの挑戦 になります。後で定義しますが、ここでの「データマイニング」とはデータを取得し、集計する作業も含めてこの言葉を指すことにしています。また、解析者とはデータマイニングを行う人のことを指します。(GREEではデータマイニングエンジニアと呼ばれています。)moritaさんの講義で学んだことを自分なりに膨らましてみました。色々誤りがあると思いますが、そういった部分は(優しく)指摘し
http://d.hatena.ne.jp/nokuno/20100915/1284564957 のスライドを眺めながら,「メモリを有効利用するのは MapReduce でも重要だよね」などとぼんやりと思いました. 以前,N-gram コーパスの作成に MapReduce を試したとき,並列に実行されるプロセスの数と全体のメモリ容量を考慮して C++ で mapper を書かないと,効率が悪くて仕方がないという結論に落ち着いていたことが,「だよね」につながっています. とはいっても,大規模なデータに関しては,できる限りメモリ上で取り扱うべしというのは一つの基本ですから,なんだか伝統への回帰のような印象も受けました.これは,最近読んだ本に書いてあったからかもしれません. [Web開発者のための]大規模サービス技術入門 ―データ構造、メモリ、OS、DB、サーバ/インフラ (WEB+DB PRE
Amazon Elastic MapReduceを使ってみた 2009-04-03 (Fri) 3:06 Amazon EC2 連日のEC2ネタです。本日、AmazonからElastic MapReduceというサービスがリリースされました。大規模データ処理技術が一気に民間の手に下りてくる、まさに革命的なサービスだと思います。 Amazon Elastic MapReduce Amazon ElasticMapReduce 紹介ビデオ With Hadoop, Amazon Adds A Web-Scale Data Processing Engine To Its Cloud Computer by techcrunch.com Elastic MapReduceは、Googleの基盤技術の一つであるMapReduceを時間単位課金で実行できるサービスです。MapReduceについては以
こんにちは。クックパッドのすみです。 去る4/2,4/3に大阪と名古屋にて「クックパッドの開発の裏側見せます」と題して講演会を開かせて頂きました。 当日は、技術部長の井原のほか、計3名のエンジニアがプレゼンさせて頂きました。 当日の資料を公開いたしますので、是非ご覧くださいませ。 最後に、大阪・名古屋の会場にご足労頂いた皆さま、 本当にどうもありがとうございました! またお会いできますことを楽しみにしております。 ・清水雄太/毎日の料理を楽しみにするためのクックパッド流エンジニアライフ [slideshare id=3645164&doc=random-100405232603-phpapp01] ・佐々木達也/「Hadoopの活用事例 in クックパッド」 [slideshare id=3636819&doc=20100402hadoop-100404223254-phpapp01] ・
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは、TechBlog担当の井野です。 3月8日に開催されたOpen TechTalk「Hadoop Hack Night」についてのレポートをお届けいたします。本イベントは、思った以上に多くの方にご応募いただき抽選とさせていただきました。当日は、当選された100名の方々にお集まりいただきました。ありがとうございました。 さて、本イベントですが、大きく分けて三部構成でお送りいたしましたので、各々ご紹介いたします。本イベントのTwitterハッシュタグ『#hadoophn』も活発にやり取りされておりました。 イベントの詳細は、技術評論社さんの「gihyo.jp」にも掲載されておりますので、 あわせてご覧ください。 Hadoop
8月に入社した佐々木です。こんにちわ! 入社してからはHadoopを使うことが多く、日々、大規模データと格闘しています。大変ではありますが、個人ではなかなか触ることが出来ないような大規模データを触れるのは楽しいです。 さて、Hadoopは最近色々なところで使われ始めてきていると思うんですが、実際に利用してみて困った事やtipsなど、実践的な情報はまだあまり公開されていません。その辺の情報をみんな求めているはず…!! そこで、僕が実際に触ってみて困った事やHadoopを使う上でポイントだと思ったことなどを社内勉強会で発表したので公開してみます。Hadoopを使っている(使いたいと思っている)方の参考になれば幸いです。 [slideshare id=2711363&doc=20091214techblog-091213183529-phpapp02] Hadoopの利用はまだまだ試行錯誤の連続
id:naoya:20080511:1210506301 のエントリのコメント欄で kzk さんに教えていただいた Hadoop Streaming を試しています。 Hadoop はオープンソースの MapReduce + 分散ファイルシステムです。Java で作られています。Yahoo! Inc のバックエンドや、Facebook、Amazon.com などでも利用されているとのことです。詳しくは http://codezine.jp/a/article/aid/2448.aspx (kzk さんによる連載記事)を参照してください。 Hadoop Streaming 記事にもあります通り、Hadoop 拡張の Hadoop Streaming を使うと標準入出力を介するプログラムを記述するだけで、Hadoop による MapReduce を利用することができます。つまり、Java 以外
はじめまして。今年の5月に入社した勝間@さがすチームです。 入社してからは、なかなか大変なことも多いですが、最近はお酒好きが集まって月曜から飲み合う 「勝間会」なるものも発足して、仕事面でも仕事以外の面でも密度の高い毎日を過ごしています! さて、僕は「さがす」チーム所属ということで、普段はレシピを「さがす」ユーザの満足度を上げるために、 クックパッドの検索まわりについて、いろいろな開発を行っています。 一方で、ユーザの「さがす欲求」について深く知るために、大規模なデータ解析を行い、欲求の分析を行う機会も増えてきました。 ところが、クックパッドのログは膨大な数があるので、一口のデータ解析と言っても通常のバッチ処理だと間に合わないため、 分散処理環境の必要性が高まってきました。 そこで、まずは手軽に試せる分散処理の王道ということで、最近ではHadoopを使ったデータ解析環境を整備しています。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く