タグ

machinelearningとsvmに関するhsato2011のブックマーク (2)

  • LIBSVM -- A Library for Support Vector Machines

    Chih-Chung Chang and Chih-Jen Lin Version 3.36 released on May 12, 2025. We enhance the Python interface. Version 3.31 released on February 28, 2023. Probabilistic outputs for one-class SVM are now supported. Version 3.25 released on April 14, 2021. Installing the Python interface through PyPI is supported > pip install -U libsvm-official The python directory is re-organized so >>> from libsvm.svm

    hsato2011
    hsato2011 2017/01/17
    libsvmのマニュアルなど入ってる
  • SVMを使いこなす!チェックポイント8つ - Qiita

    僕はSVMが大好きです.シュパッてきれいに分類できている姿を見ると,かっこよくてドキドキします. 今回は,SVMの性能を最大限に引き出すために知っておくと役立つことを書いていこうと思います.ちょっとチューニングを行うだけで,10%〜20%精度が向上するなんてことはよくあります. なお,記事は__使いこなし方__にフォーカスしているので,理論的なことを知りたい方は別途確認して下さい. 特徴量の作成 まずは,適切な特徴量を作成するにあたって注意すべきことを2つ紹介します. 1. スケーリング スケーリングとは,特徴量のとりうる値の範囲をあらかじめ調整してあげることです. なぜスケーリングするの? 理由は2つあります. 大きい値の範囲をとる特徴量に引きずられないようにします.[0,10]での1と2の違いは1だけですが,[0,10000]での1の100の違いよりもずっと重要です.すなわち,これら

    SVMを使いこなす!チェックポイント8つ - Qiita
  • 1