Department of Computer Science University of California, Irvine Abstract In this paper we study how to efficiently perform set-similarity joins in parallel using the popular MapReduce framework. We propose a 3-stage approach for end-to-end set-similarity joins. We take as input a set of records and output a set of joined records based on a set-similarity condition. We efficiently partition the dat
どうも,実は今年から開発チームにjoinしていた中川です.可愛い犬の写真がなかったので,可愛いマスコットの画像を貼っておきます. 最近MapReduceとかその実装であるHadoopとかをよく聞くようになりました.これはつまり,それだけ大量のデータをなんとか処理したいという要望があるからだと思います.しかし当たり前ですが,MapReduceは銀の弾丸ではありません. ということで,最近気になっているMapReduceとは違ったアプローチを取っている分散処理基盤について,社内のTechTalkで話した内容を簡単にまとめて紹介したいと思います. Bulk Sychronous Parallel このアルゴリズム自体は1990年に誕生したものです.長いのでBSPと書きます.さて,グラフから最短経路を求める時,MapReduceは使えるでしょうか?このような論文が出るくらいですから出来ないことはあ
"Graph algorithms" を考えます。 下図の S, A, B, C, D は 5 つの Web ページで、矢印は、Web リンクを表しているとします。(このような関係は、『有向グラフ』と捉えることができます。)このとき、ページ S からスタートして、最低、何クリックで、A 〜 D の各ページに到達するかを計算します。 ___________ ___________ | ↓| ↓ S → A → B → C ← D ↑____|↑__________|____↑ 再帰的な計算をごにょごにょすれば、何とかなる気がしますが(普通は、ダイクストラのアルゴリズムを使います)、MapReduce の場合は、基本的には『端から順番になめていく』タイプの計算しかできないので、次のように考えます。 1. 各ページの求める答えを(最初は不明なので)『?』と定義します。(S 自身は、不明で
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く