You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog 高次元ベクトルデータの近傍検索(NGT)の研究開発を行っているYahoo! JAPAN研究所の岩崎です。私は応用面では類似画像検索や特定物体認識の研究開発を行っていますが、NGTは画像系だけでなく多種多様なデータ検索に利用できるので多くの方に利用していただきたく、NGTをOSSとして公開しています。 NGTは複数種類のグラフ型インデックスを提供していますが、最近新たにONNG(Optimized Nearest Neighbors Graph)というインデックスを追加しました。これを機会にグラフ型インデックスについて解説しようと思います。 近傍検索のインデックスとは 近傍検索とは、距離関数が規定されたベクトル空間においてクエリとし
SourceThe year 2020 has just started but we can already see the trends of Graph Machine Learning (GML) in the latest research papers. Below is my view on what will be important in 2020 for GML and the discussion of these papers. IntroductionThe goal of this article is not on introducing the basic concepts of GML such as graph neural networks (GNNs), but on exposing cutting-edge research that we ca
Content What is this course about? Complex data can be represented as a graph of relationships between objects. Such networks are a fundamental tool for modeling social, technological, and biological systems. This course focuses on the computational, algorithmic, and modeling challenges specific to the analysis of massive graphs. By means of studying the underlying graph structure and its features
Data Models, Knowledge Acquisition, Inference and Applications Department of Computer Science, Stanford University, Spring 2021 Tuesdays 4:30-5:50 P.M. PDT and Thursdays 4:30-5:50 P.M. PDT Course Info Knowledge graphs have emerged as a compelling abstraction for organizing world's structured knowledge over the internet, capturing relationships among key entities of interest to enterprises, and a w
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く