ソフトウェアエンジニアの間でも一般的な言葉になった「機械学習」。本書では、その機械学習やデータ分析の道具をどのようにビジネスに生かしていけば良いのか、また不確実性の高い機械学習プロジェクトの進め方などを「仕事で使う」という観点から整理し…
フリー素材サイト「いらすとや」に出てくる人間風の画像を自動生成するモデルをDeep Learningで作りました。実装にはGoogle製のライブラリ「TensorFlow」と機械学習アルゴリズムの「DCGAN」「Wasserstein GAN」を用いています。 以下は生成された人間画像のうちそれなりにきれいなものの一例です。頬のところが赤くなっていて何となく本家いらすとやの特徴を捉えられていると思います。 「いらすとや」とは? 実装した手法の概要 DCGAN、Wasserstein GANについて Generator Discriminator GeneratorとDiscriminatorの学習 学習や実装の詳細 Generator、Discriminatorのネットワーク構成やパラメーター 訓練データ その他 学習経過 モデルを検証する 入力にバイアスを掛けていい画像を出やすくする ま
はじめまして。 本業はアスキーアート (以下AA) 職人のOsciiArtといいます (本業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
ディープラーニングで「インド人を右に」を理解する: Generative Adversarial Network による画像モーフィング 「インド人を右に」問題 インターネットを長く使っている方は、伝説の誤植「インド人を右に」 [1] についてご存知なのではないでしょうか。 「くお〜!! ぶつかる〜!! ここでアクセル全開、インド人を右に!」 この唐突に過ぎる意味不明な「インド人」は「ハンドル」の誤植であり、それはライターの手書きの文字が汚かったために発生したとされています。 …手書きの文字が汚かったとして、どうすれば「ハンドル」が「インド人」になるのか? 従来より、この問題について様々な考察がなされてきました。 ここでは、近年の技術の発展の成果を取り入れ、コンピュータに文字を書かせることによって「ハンドル」から「インド人」への変容についてアプローチしてみたいと思います。 # これは De
なんというか、この結果を見たときは衝撃だった。 時は東京都知事選の結果が世を沸かせ、小池百合子氏が圧勝しメディアで話題になっていた時、ディープラーニングで文章を生成するという人工知能システムのテストのために試行錯誤をしていた、私のコンピュータ端末にこれが現れた。 若者もあり、あるいは才智|逞《たくま》しゅうして役人となり商人となりて天下を動かす者もあり、あるいは智恵分別なくして生涯、飴《あめ》やおこし[#「おこし」に傍点]四文の銭も、己《おの》が職分の何ものたるを知らず、子をばよく生めどもその子を教うるの道を知らず、いわゆる恥も法も知らざる馬鹿者にて、その子孫繁盛すれば一国の益はなさずして、かえって害をなす者なきにあらず。かかる馬鹿者を取り扱うにはとても道理をもってすべからず、不本意ながら力をもって威《おど》し、一時の大害を鎮《しず》むるよりほかに方便あることなし。 これすなわち世に暴政府
家のキュウリが枯れてしまってから知りました。 ある程度パラメータがはっきりすれば 大規模なFPGAで処理できるかもしれません。 12月3日の大垣ミニメーカーズフェアでデジタルフィルタの人と会えたら話してみます。 返信削除
多層構造のニューラルネットワークによる機械学習、いわゆる「ディープラーニング」の力を使ってグレースケールの画像をカラーに変換させるという試みが行われていて、実際に、白黒時代のアニメの映像をカラー化させたらどうなるかというムービーがYouTubeで公開されています。 Colorful Image Colorization http://richzhang.github.io/colorization/ GitHub - pavelgonchar/colornet: Neural Network to colorize grayscale images https://github.com/pavelgonchar/colornet グレースケール画像をディープラーニングでカラー化する「ディープラーニング自動彩色」プロジェクトを進めているのはRichard Zhang氏ら。もちろん、完全にオリ
Deep Learningという言葉を色んなところで聞くようになり、Googleからも TensorFlow というものが出たし、そろそろちょっと勉強してみるか〜 ということで初心者が機械学習に手を出してみた。 TensorFlowのtutorialを見てみると、まず最初に「MNIST」という手書き文字の識別問題が出てくる。その問題に対して、こういうモデルを作ってこうやって学習させていくと91.2%くらいの識別率になります、さらに飛躍させてこういうモデルでこうやって学習させると99.2%くらいまで識別率が上がります、とか書いてあって、確かになるほどーと数字で納得もできるのだけど、せっかくなら実際にその学習結果を使って自分の書いた数字を識別してもらいたいじゃないか、ということで そういうのを作ってみた。 https://github.com/sugyan/tensorflow-mnist c
[速報]Google、クラウドで高速にディープラーニングを行う「Cloud Machine Learning」発表、TensorFlowベース。GCP Next 2016 Googleは同社のクラウドに関するイベント「GCP Next 2016」を3月23日、24日の2日間にわたり米サンフランシスコで開催しています。 初日の基調講演で、最後の話題は機械学習(Machine Learning)でした。Googleはクラウドサービスの1つとして機械学習機能にも注力することを表明しています。Google Senior FellowのJeff Dean氏は、機械学習はコンピュータの歴史のなかで最も重要な出来事の1つだと説明。 Googleは2012年以来機械学習をさまざまなサービスに利用し、いま社内ではより使いやすくなった第二世代を機械学習を利用しているとのこと。 トレーニング済みの機械学習サービ
「いつか勉強しよう」と人工知能/機械学習/ディープラーニング(Deep Learning)といったトピックの記事の見つけてはアーカイブしてきたものの、結局2015年は何一つやらずに終わってしまったので、とにかく一歩でも足を踏み出すべく、本質的な理解等はさておき、とにかく試してみるということをやってみました。 試したのは、TensorFlow、Chainer、Caffe といった機械学習およびディープラーニングの代表的なライブラリ/フレームワーク3種と、2015年に話題になったディープラーニングを利用したアプリケーション2種(DeepDream、chainer-gogh)。 (DeepDreamで試した結果画像) タイトルに半日と書きましたが、たとえばTensorFlowは環境構築だけなら10分もあれば終わるでしょうし、Chainerなんてコマンド一発なので5秒くらいです。Caffeは僕はハ
この記事は第2のドワンゴ Advent Calendar 2015の24日目の記事です。 ドワンゴエンジニアの@ixixiです。 niconicoのデータをDeep Learningなアプローチで解析してみた話です。 nico-opendata niconicoの学術目的用データ公開サイト https://nico-opendata.jp が最近オープンしました。 これまでも、国立情報学研究所にて、ニコニコ動画コメントデータや大百科データが公開されていましたが、 nico-opendataでは、ニコニコ静画のイラストデータの約40万枚のイラストとメタデータが研究者向けにデータ提供されています。 今回は、ニコニコ動画コメントデータ(誰でも取得可能)を用いたDeep Learningによるコメント解析例を紹介します。 超自然言語 ニコニコのコメントデータに限らず、twitterでのtweetや
ドワンゴは、イラスト投稿サービス「ニコニコ静画」の投稿作品を活用したディープラーニング技術の研究成果を、11月2~5日に神戸で開催される、コンピュータグラフィックスとインタラクティブ技術に関する展示会「第8回ACM シーグラフアジア2015」で発表する。あわせて、学術機関向け研究目的データ公開用サイト「nico-opendata」を開設。12月上旬から大学などの学術機関にデータを提供していくという。 発表するのは、イラストの画像データからニコニコ静画での閲覧数を事前予測する技術。ニコニコ静画に投稿されたこれまでのイラストの閲覧数、お気に入り数を同時にニューラルネットで学習し、一切のメタデータを使わず、画像データからのみ閲覧数やお気に入り数を予測するものだと説明している。 ドワンゴによれば、たとえば、クリエイターがイラストを投稿、公開する前に、画像のデータから閲覧数やお気に入り数をある程度予
ディープラーニング専用GPUサーバファーム「紅莉栖(くりす)」を構築、人工知能研究用に無償提供を開始2015.09.17 株式会社ドワンゴ 株式会社ドワンゴ(本社:東京都中央区、代表取締役社長:荒木隆司)は、ディープラーニング専用GPUサーバファーム「紅莉栖(くりす)」を構築し、一部の研究機関を対象に人工知能研究用として無償貸出をすることとなりました。 Maxwell世代のCUDAコア搭載したGPUサーバを採用このたびドワンゴで開設したGPUサーバファーム「紅莉栖(くりす)」は、現時点で世界最高性能となるMaxwell世代のCUDAコアを搭載したGPUサーバー100台程度で構成される予定です。 サーバーファームの名称の「紅莉栖(くりす)」は、グループ企業の株式会社MAGES.が手がけるゲーム作品「STEINS;GATE」のヒロインである牧瀬紅莉栖(まきせくりす)と、ニコニコ生放送の大型企画
ディープラーニングを小学生でも使えるようにしてみる Trial to make easy to use deep learned neural network June 30, 2015 清水 亮 ryo_shimizu 新潟県長岡市生まれ。1990年代よりプログラマーとしてゲーム業界、モバイル業界などで数社の立ち上げに関わる。現在も現役のプログラマーとして日夜AI開発に情熱を捧げている。 Tweet この一ヶ月で、ディープラーニングが急激に使いやすくなってきています。 Google傘下のディープラーニング研究グループDeep Mindでインターンをしているスタンフォード大学の学生はこんな台詞をツイートしています。 「ディープラーニングに関して、新しくクールな論文が発表される速度は、それを読める速度より速い」 それこそ毎日のようにディープラーニングに関する何らかの新しい話題が出てきます。
うまくできましたか? ボヤけたり、ギザギザになったりしませんでしたか? waifu2xをお試しください。 (ブラウザの処理に影響されないようクリックで拡大おねがいします) waifu2xは、二次元画像を2倍に拡大するソフトウェアです。多くの二次元画像についてスゴイ級のクオリティで拡大できます。 waifu2xは、最新鋭の人工知能技術 Deep Convolutional Neural Networks を使って開発されました。 waifu2xの人工知能は、次の問に答えます。 いまから与える画像はある画像を半分に縮小したものである。縮小される前の画像を求めよ。 画像を拡大するのではなく、縮小される前の状態に戻します。 縮小されてないオリジナル画像を与えた場合も、やはり縮小される前の画像を答えます。 その画像は本来存在しないものですが、waifu2xはそれを想像で創ります。 二次元画像のJPE
ディープラーニングが猛威を振るっています。私の周りでは昨年から多く聞かれるようになり、私も日経BPさんの連載で昨年5月にGoogleの買収したDeep Mind社について触れました。今年はさらに今までディープラーニングについて触れていなかったメディアでも触れられるようになってきましたね。例えば、イケダハヤトさんも先日。高知でも話題になっているのですね。 私事ですが、今度湯川鶴章さんのTheWaveという勉強会で、人工知能とビジネスについて一時間ほど登壇させていただくことになりました。有料セミナーということです。チャールズべバッジの解析機関についてはこのブログでも以前触れましたが、「機械が人間を置き換える」みたいな妄想は100年位は言われていることですね。「解析機関」「機械学習」「人工知能」「シンギュラリティー」など、呼び名はどんどん変わり、流行り廃りもありますが、最近ロボットの発達も相まっ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く