ソフトウェアエンジニアの間でも一般的な言葉になった「機械学習」。本書では、その機械学習やデータ分析の道具をどのようにビジネスに生かしていけば良いのか、また不確実性の高い機械学習プロジェクトの進め方などを「仕事で使う」という観点から整理し…
はじめまして。 本業はアスキーアート (以下AA) 職人のOsciiArtといいます (本業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe
ディープラーニングで「インド人を右に」を理解する: Generative Adversarial Network による画像モーフィング 「インド人を右に」問題 インターネットを長く使っている方は、伝説の誤植「インド人を右に」 [1] についてご存知なのではないでしょうか。 「くお〜!! ぶつかる〜!! ここでアクセル全開、インド人を右に!」 この唐突に過ぎる意味不明な「インド人」は「ハンドル」の誤植であり、それはライターの手書きの文字が汚かったために発生したとされています。 …手書きの文字が汚かったとして、どうすれば「ハンドル」が「インド人」になるのか? 従来より、この問題について様々な考察がなされてきました。 ここでは、近年の技術の発展の成果を取り入れ、コンピュータに文字を書かせることによって「ハンドル」から「インド人」への変容についてアプローチしてみたいと思います。 # これは De
ディープラーニングを小学生でも使えるようにしてみる Trial to make easy to use deep learned neural network June 30, 2015 清水 亮 ryo_shimizu 新潟県長岡市生まれ。1990年代よりプログラマーとしてゲーム業界、モバイル業界などで数社の立ち上げに関わる。現在も現役のプログラマーとして日夜AI開発に情熱を捧げている。 Tweet この一ヶ月で、ディープラーニングが急激に使いやすくなってきています。 Google傘下のディープラーニング研究グループDeep Mindでインターンをしているスタンフォード大学の学生はこんな台詞をツイートしています。 「ディープラーニングに関して、新しくクールな論文が発表される速度は、それを読める速度より速い」 それこそ毎日のようにディープラーニングに関する何らかの新しい話題が出てきます。
ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 猫検出 では画像内の猫の顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いて猫の品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内の猫カフェ等で出会える猫に限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日本が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内猫画像は2400枚、クラス数は12で1クラスにつき200枚あります。今
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く