タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

computational-complexity-theoryとsearch-algorithmとtime-complexityに関するnabinnoのブックマーク (2)

  • NP - Wikipedia

    計算複雑性理論における NP (英: Non-deterministic Polynomial time)は、複雑性クラスのひとつであり、答えがyesとなるような問いに対して、多項式時間で検証できる証拠が存在する決定問題のクラスである。 NP は、NTIMEを使って次のように定義される[1]。 つまり、非決定性チューリングマシンによって多項式時間で解ける決定問題のクラスであり、名称も 英: Non-deterministic Polynomial time(非決定性多項式時間)の略である。また、多項式時間検証可能という同値な定義もある。言語 が NP に属するとは、多項式時間決定性チューリングマシン と多項式 が存在し、次の性質を満たすことを言う。 ならば、ある証拠 が存在し、 ならば、どんな証拠 でも、 ハミルトン閉路問題は、「与えられたグラフについて、全ての頂点を一度だけ通る閉路(ハミ

  • P (計算複雑性理論) - Wikipedia

    Pはしばしば、「効率的に解ける」問題のクラスとして扱われる。しかしながら、RPやBPPといった乱択で解けるクラスも、Pより大きいかもしれないが「効率的に解ける」と考えることもできる。逆にPに属しても実際には扱うことが困難である問題もある。例えば、入力のサイズnに対してn1000000の時間を必要とする問題も、定義からはPに属する。 Pに属する問題のうち対数領域還元に関して最大なものはP完全であるという。 非決定性チューリング機械によって多項式時間で解かれる判定問題のクラスをNPという。PがNPに含まれることは自明である。多くの研究者がPはNPの真部分集合であると信じているが、証明されていない(P≠NP予想)。 対数領域の決定性チューリング機械で判定可能な問題のクラスであるLはPに含まれるが、L = Pかどうかは未解決である。対数領域の交替性チューリング機械によって解ける問題のクラスALOG

  • 1