- 博客(44)
- 收藏
- 关注
原创 YOLOv11改进之骨干网络替换:Poolformer
本文带大家了解了 PoolFormer 的核心原理,并展示了如何将其应用到 YOLOv11 中,从而提升目标检测的特征建模能力。接下来,我会继续分享 更多 YOLOv11 的改进思路,例如引入轻量化注意力机制、优化损失函数、改进特征融合结构等,帮助大家在不同应用场景下都能实现更优的检测效果。如果你对这些内容感兴趣,可以持续关注本专栏,后续的改进方法都会逐一拆解与实战演示。
2025-09-05 15:28:14
452
原创 YOLOv13训练自己的数据集
本文详细介绍了YOLOv13目标检测模型的完整使用流程。首先从环境配置入手,包括源码下载、conda虚拟环境搭建和依赖库安装;接着演示了原始模型预测验证环境可用性。然后重点讲解了自定义数据集的制作方法,包括数据标注、数据集划分脚本和目录结构配置。最后提供了模型训练的参数配置示例和训练脚本,并展示了训练结果分析的方法。文章还提到后续将更新模型改进思路和优化方法,为读者提供了从入门到进阶的完整学习路径。
2025-09-05 14:05:14
1231
原创 YOLOv13 详解:基于超图增强的自适应视觉感知
YOLOv13创新性地引入超图建模(Hypergraph Learning)提升目标检测性能。核心创新包括:1)HyperACE超图自适应相关增强模块,通过超图卷积聚合高阶相关性;2)FullPAD全流程特征分发机制,改善信息流动;3)轻量化DS系列模块减少30%参数量。实验表明,YOLOv13-Nano在MSCOCO上达到41.6mAP,较前代提升1.5%,同时在复杂场景和跨域任务中表现更优。该模型为实时目标检测提供了新思路,未来可拓展至视频检测和多模态任务。
2025-09-04 16:56:26
771
原创 YOLOv5 / YOLOv8 / YOLOv11 全面对比:从经典到最新
YOLO系列目标检测模型对比分析:YOLOv5(2020)作为经典实用版本,社区生态完善,适合入门和工程应用;YOLOv8(2023)采用无锚框架构,支持多任务统一框架,适合研究和复杂任务;YOLOv11(2025)融合Transformer思想,在精度和速度上获得更好平衡,适合高精度实时场景。
2025-09-04 09:29:00
145
原创 YOLOv11改进之骨干网络替换:SwinTransformer
本文带大家了解了 Swin Transformer 的核心原理,并展示了如何将其应用到 YOLOv11 中,从而提升目标检测的特征建模能力。
2025-09-04 09:13:33
182
2
原创 YOLOv11训练自己的数据集
本文介绍了YOLOv11模型的预测使用流程,完成了从 环境配置 → 模型预测 → 数据集制作 → 参数配置 → 模型训练与结果分析 的完整流程,已经能够让你顺利跑通 YOLOv11 的训练。
2025-09-02 14:39:53
479
原创 YOLOv11 改进系列专栏导读
目标检测是计算机视觉最核心的任务之一,而 YOLOv11 的出现,让我们在精度、速度和实用性上都有了新选择。我会在这个专栏里,把原理解析 + 改进方法 + 实验对比 + 实战案例系统分享给大家,帮助你真正掌握 YOLOv11 的改进与落地。欢迎订阅,让我们一起从 YOLOv11 出发,探索目标检测的新边界!🚀。
2025-09-02 09:59:38
191
原创 UTTracker背景矫正模块详解:解决无人机追踪中的摄像头运动问题
检测相邻帧之间的背景变化。计算变换矩阵(Transformation Matrix),将上一帧的目标位置映射到当前帧。校正搜索区域,确保目标不会因为摄像头运动而超出视野。密集特征匹配(Dense Feature Matching)变换矩阵计算(Transformation Matrix Estimation)背景矫正模块通过LoFTR算法实现了密集特征匹配,通过RANSAC算法计算出鲁棒的变换矩阵,动态校正了目标位置。这使得UTTracker在应对摄像头运动和动态背景问题时表现更加稳定。
2025-01-04 15:27:19
908
原创 python爬虫实战:抓取豆瓣电影 Top250数据
该段代码只能抓取一页的数据,如果你想抓取整个 Top250 列表,就需要处理分页问题。豆瓣 Top250 分为 10 页,每页显示 25 部电影,所以你需要遍历多个页面,逐页抓取数据。首先,打开豆瓣电影 Top250 页面,并通过浏览器的开发者工具(F12)观察网页的结构。每部电影的标题和评分位于特定的 HTML 标签内,可以通过这些标签来提取数据。通过该爬虫可以成功抓取豆瓣电影 Top250 页面的电影标题和评分信息。就可以访问到下一页。因此,可以通过一个循环来构建不同的 URL,并抓取多页的数据。
2024-10-15 13:20:25
2319
原创 Python 网络爬虫教程
网络爬虫是一种自动化程序,它模拟人类用户访问网页,自动获取网页上的内容。这些数据可以是文本、图片、视频等。爬虫的核心任务是发送 HTTP 请求,获取网页响应并解析内容。
2024-10-15 11:44:31
2195
2
原创 实时视频带宽揭秘:轻松掌握计算方法
在如今的互联网时代,视频传输已经成为了主流的应用场景之一,特别是实时视频应用如视频会议、直播等。这些应用对带宽的要求很高,因此了解如何计算实时视频的带宽是非常重要的。本文将详细介绍实时视频带宽的计算过程。
2024-07-24 14:00:15
1884
原创 使用LabelImg标注YOLO目标检测数据格式——LabelImg详细使用教程
在目标检测任务中,数据标注是一个重要的环节。LabelImg是一个开源的图像标注工具,广泛应用于生成YOLO格式的标注数据。本教程将详细介绍如何使用LabelImg进行标注,并导出适用于YOLO目标检测的数据格式。通过本教程,你应该能够熟练使用LabelImg进行YOLO格式的目标检测数据标注。LabelImg是一个功能强大且易于使用的工具,希望它能帮助你在目标检测任务中事半功倍。如果你有任何问题或建议,欢迎在评论区留言讨论。
2024-07-17 15:44:06
16173
9
原创 OpenCV与霍夫变换:检测符合特定斜率范围的直线
本文介绍了如何使用 OpenCV 和霍夫变换检测图像中的直线,并筛选出符合特定斜率范围的直线。
2024-07-04 17:21:28
858
原创 揭秘 Python 大师的10个高效编程秘诀
Python 是一门功能强大且易于学习的编程语言,广泛应用于数据科学、机器学习、Web 开发等领域。本文将介绍 10 个实用的 Python 使用技巧,帮助你提升编程效率。
2024-07-04 16:18:07
353
原创 JDK1.8下载、安装与配置完整图文2024最新教程
运行Pycharm时,报错No JVM installation found. Please install a JDK.If you already have a JDK installed, define a JAVA_HOME variable in Computer >System Properties > System Settings > Environment Variables.首先可以检查是否已安装java,通过终端输入java进行验证,我这里显示未安装,因此进行下一步。
2024-07-03 17:51:40
5155
原创 如何更改 Python pip 源为国内源(清华、阿里、腾讯、豆瓣)
为了提高下载速度,我们可以将 pip 源更改为国内的镜像源。本文将介绍如何临时和永久地更改 pip 源为国内源。
2024-07-03 14:59:59
4999
原创 Python基础入门知识
Python以简洁的语法和强大的功能而著称,是一种解释型、面向对象、动态数据类型的编程语言。Python设计的核心理念是代码的可读性和简洁性,采用了大量的缩进来标识代码块,从而让代码看起来更加整洁和易读。
2024-07-02 21:14:28
1948
原创 Linux快捷指令
一、各类小技巧1、ctrl + c 强制停止Linux某些程序运行中,或者命令输入错误时,可通过ctrl + c强制停止。2、ctrl + d 退出或登出通过快捷键:ctrl + d,退出账户的登录退出某些特定程序的专属页面3、历史命令搜索可以通过history命令,查看历史输入过的命令可以通过:!命令前缀,自动执行上一次匹配前缀的命令(从下往上搜索,第一个)可以通过快捷键:ctrl + r,输入内容去匹配历史命令;如果搜索内容是你需要的,则回车运行;如果
2023-10-13 21:09:47
858
原创 手把手带你学算法——旋转图像(48)
在本篇博客中,我们深入研究了LeetCode问题48——"旋转图像",这个问题要求我们将一个n x n的二维矩阵顺时针旋转90度。我们介绍了一种解决方法,通过两个步骤实现:矩阵转置和翻转每一行。在矩阵转置步骤中,我们通过两层循环将矩阵的行和列互换;在翻转每一行步骤中,我们使用列表切片将每一行的元素逆序排列。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解如何旋转二维矩阵。这篇文章将帮助你提高矩阵处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-10-05 15:23:52
236
原创 手把手带你学算法——螺旋矩阵(54)
在本篇博客中,我们深入研究了LeetCode问题54——"螺旋矩阵",这个问题要求我们按螺旋顺序遍历给定矩阵的所有元素。我们介绍了一种模拟遍历的方法,通过初始化边界并模拟顺时针遍历的过程,按螺旋顺序获取矩阵的元素。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握如何按螺旋顺序遍历矩阵。这篇文章将帮助你提高矩阵处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-10-05 12:59:15
261
原创 手把手带你学算法——搜索二维矩阵 II(240)
在本篇博客中,我们深入研究了LeetCode问题240——"搜索二维矩阵 II",这个问题要求我们在一个按升序排列的二维矩阵中高效地搜索目标值。我们介绍了一种高效的解决方法,利用矩阵的升序特性从右上角开始逐步排除行或列,以快速缩小搜索范围。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握如何在二维矩阵中进行目标值搜索。这篇文章将帮助你提高算法设计和搜索技巧,为解决类似问题提供有用的指导。
2023-10-05 11:01:53
233
原创 手把手带你学算法——两两交换链表中的节点(24)
在本篇博客中,我们深入研究了LeetCode问题24——"两两交换链表中的节点",这个问题要求我们交换链表中每两个相邻的节点。我们介绍了两种解决方法:递归和迭代。递归方法通过递归处理子问题来交换节点,而迭代方法则通过迭代遍历链表并在每两个节点之间进行交换。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握如何交换链表中的节点。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-10-04 19:44:22
211
原创 手把手带你学算法——删除排序链表中的重复元素(83)
在本篇博客中,我们将深入研究LeetCode问题83——"删除排序链表中的重复元素",这个问题要求我们删除排序链表中出现多次的重复元素,保留每个元素的第一次出现。我们通过使用迭代方法,逐步遍历链表并删除重复元素,同时保持链表的有序性。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握如何处理排序链表中的重复元素。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-10-03 22:54:41
249
原创 YOLO系列最新综述从YOLOv1到YOLOv8【2023】
YOLO已成为机器人、无人驾驶汽车和视频监控应用的核心实时目标检测系统。我们对YOLO的发展进行了全面的分析,检查了从最初的YOLO到YOLOv8、YOLO-NAS和YOLO with Transformers的每次迭代中的创新和贡献。我们首先描述标准指标和后处理;然后,我们讨论了网络架构的主要变化和每个模型的训练技巧。最后,我们总结了YOLO发展的重要经验教训,并对其未来发展进行了展望,强调了增强实时目标检测系统的潜在研究方向。
2023-10-03 16:47:40
6819
原创 手把手带你学算法——回文链表(234)
在本篇博客中,我们将深入研究LeetCode问题234——"回文链表",这个问题要求我们判断给定的单链表是否是回文链表。为了解决这一问题,我们采用了快慢指针和链表反转的方法。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握如何判断链表是否是回文的。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-27 17:23:23
214
原创 手把手带你学算法——排序链表(148)
在本篇博客中,我们将深入研究LeetCode问题148——"排序链表",这个问题要求我们对链表进行排序,并要求时间复杂度为 O(n log n) 和常数空间复杂度。我们将介绍如何使用归并排序算法来解决这一问题,逐步拆分、排序和合并链表,最终得到有序链表的方法。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一高效排序算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-17 13:35:29
257
原创 手把手带你学算法——两数相加(2)
在本篇博客中,我们将深入研究LeetCode问题2——"两数相加",这个问题要求我们模拟大整数相加的过程,通过链表表示两个大整数相加的结果。我们将介绍如何使用迭代方法来解决这一问题,逐步遍历链表节点并模拟加法运算。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-17 09:45:50
323
原创 手把手带你学算法——删除排序链表中的重复元素Ⅱ(82)
在本篇博客中,我们将深入研究LeetCode问题82——"删除排序链表中的重复元素Ⅱ",这个问题要求我们删除排序链表中出现次数超过一次的所有重复元素。我们将介绍如何使用迭代方法,逐步遍历链表以删除重复元素。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一链表操作的算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-15 22:45:33
259
原创 手把手带你学算法——链表中倒数第k个节点(剑指 Offer 22)
欢迎来到本教程的一篇新文章,今天我们将学习如何解决剑指 Offer 22 题——"链表中倒数第k个节点"。这个问题要求我们找到链表中倒数第 k 个节点,并返回该节点的值。通过学习如何使用快慢指针来解决这个问题,你将提高你的链表处理和算法设计能力。
2023-09-12 16:55:48
342
原创 手把手带你学算法——重排链表(143)
在本篇博客中,我们将深入研究LeetCode问题143——"重排链表",这个问题要求我们重新排列链表中的节点。我们将介绍如何找到链表的中点、反转链表以及合并两个链表,以实现链表的重排。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一链表操作的算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-11 23:00:28
518
原创 手把手带你学算法——环形链表 II(142)
本篇博客将深入研究LeetCode问题142——"环形链表 II",这个问题要求我们找到环形链表的入口点。我们将介绍如何使用快慢指针方法,逐步遍历链表以确定是否存在环,然后找到环的入口点。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一链表操作的算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-09 10:38:26
349
原创 手把手带你学算法——相交链表(160)
在本篇博客中,我们将深入研究LeetCode问题160——"相交链表",这个问题要求我们找到两个链表的交点。我们将介绍如何使用双指针方法,逐步遍历两个链表,以确定它们是否相交,如果相交,则找到交点的位置。通过详细的问题描述、解决思路和Python代码示例,你将更好地理解并掌握这一链表操作的算法。这篇文章将帮助你提高链表处理和算法设计的能力,为解决类似问题提供有用的指导。
2023-09-07 22:04:05
385
1
原创 手把手带你学算法——环形链表(141)
本篇博客将深入探讨LeetCode问题141——"环形链表",这个问题涉及链表操作。我们将学习如何使用快慢指针技巧来检测链表中是否存在环。通过详细解释问题描述和解决思路,以及提供了Python代码示例,你将能够更好地理解和应用这一经典的链表算法。这篇文章将帮助你提高链表处理和算法设计的能力,无论你是初学者还是有经验的程序员。
2023-09-06 19:35:53
474
1
原创 手把手带你学算法——合并K个有序链表(23)
在本篇博客中,我们将学习如何解决LeetCode中的问题23——"合并K个有序链表"。这个问题要求我们将K个有序链表合并成一个新的有序链表,并提供了一种高效的算法解决方法。我们将使用分治法和归并排序的思想,逐步合并这些链表,最终得到一个有序的结果。无论你是初学者还是有一定经验的程序员,这篇教程都将帮助你提高链表处理和算法设计的能力。
2023-09-06 11:06:09
477
1
原创 【手撕】K-measn算法及python代码实现及改进
K-means 算法是一种无监督学习算法,用于将数据集中的数据点划分为 K 个不同的簇,其中 K 是用户定义的超参数。这个算法的目标是使每个数据点都属于离它最近的簇的中心点,从而最小化数据点与簇中心点之间的距离。初始化:随机选择 K 个数据点作为初始的簇中心点。分配:对每个数据点,计算它与每个簇中心点的距离,并将它分配到距离最近的簇中心点所在的簇。更新:对于每个簇,计算新的簇中心点,通常是该簇中所有数据点的平均值。重复:重复步骤 2 和步骤 3,直到簇中心点不再改变,或者达到最大迭代次数。结束。
2023-09-05 19:49:29
825
1
原创 手把手带你学算法——合并两个有序链表(21)
在本篇博客中,我们将学习如何解决LeetCode中的问题21——"合并两个有序链表"。这个问题要求我们合并两个有序链表并将其作为一个新链表返回。我们将使用迭代方法来解决这个问题,通过比较两个有序链表的节点值,逐一合并它们,最终返回合并后的有序链表。无论你是初学者还是有一定经验的程序员,这篇教程都将帮助你提高链表处理技能,解决类似的链表问题。
2023-09-05 16:59:10
535
1
机器视觉工业相机客户端MVS 4.3.2版本
2024-08-26
yolov5-7.0源码,附yolov5s分割模型权重
2024-08-14
YOLOv5模型6.0版本权重
2024-07-19
毕业设计&课设:基于YOLOv8的道路标识线识别
2024-07-11
FastSAM资源文件包
2024-07-11
该资源为YOLOv5中6.0版本的预测文件,增添了自动裁剪所需类别,同时还增加了自定义感兴趣区域检测
2024-07-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人