A Survey of Large Language Models in Medicine: Principles, Applications, and Challenges

828 篇文章

已下架不支持订阅

本文调查了大型语言模型(LLM)在医学中的应用,包括预训练、微调和提示原则,以及在生物医学NLP任务中的性能。尽管LLM展现出临床应用潜力,如诊断和临床笔记生成,但还面临幻觉、可解释性、数据短缺和评估局限性等挑战。未来的研究应关注新评估基准、跨学科合作和多模式LLM的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Survey of Large Language Models in Medicine: Principles, Applications, and Challenges》的翻译。

摘要

大型语言模型(LLM),如ChatGPT,由于其令人印象深刻的人类语言理解和生成能力而受到广泛关注。因此,LLM在医学中的应用,以帮助医生和患者护理,成为人工智能和临床医学的一个有前途的研究方向。为了反映这一趋势,本调查全面概述了LLM在医学中的原理、应用和面临的挑战。具体而言,我们的目标是解决以下问题:1)如何构建医疗LLM?2) 医疗LLM的下游性能是什么?3) 如何在现实世界的临床实践中使用医学LLM?4) 医疗LLM的使用带来了哪些挑战?以及5)我们如何更好地构建和利用医学LLM?因此,本调查旨在深入了解LLM在医学中的机遇和挑战,并为构建实用有效的医学LLM提供宝贵的资源。定期更新的医学LLM实用指南列表可在https://github.com/ai-in-health/medllmspracticalguide找到.

1 引言

2 医疗大语言模型的原则

2.1 预训练

2.2 微调

2.3 提示

### 多模态机器学习的基础原则 多模态机器学习涉及处理来自不同数据源的信息,例如视觉、音频和文本等。其基础原则之一是对模态的定义进行了清晰阐述[^2]。具体来说,模态是指一种特定的数据形式或感知通道,每种模态都携带独特的信息并可能与其他模态存在关联。 为了实现有效的多模态融合,研究者通常依赖于对齐技术,即将不同的模态映射到同一特征空间中以便进行联合分析[^3]。这种对齐过程可以基于显式的匹配策略或者隐式的表示学习方法。 ### 当前的发展趋势 近年来,在深度学习框架下,多模态模型的设计逐渐成为主流方向。相比传统的浅层学习算法[^1],深层神经网络能够自动提取复杂而抽象的跨模态特征组合。特别是在自然语言处理(NLP)领域与计算机视觉(CV)交叉应用方面取得了显著进展: - **预训练模型**:大规模参数化架构如BERT-Vision-Language Models (VL-BERTs),通过共享权重机制实现了图像-文字交互理解能力。 - **Transformer结构的应用扩展**:不仅限于序列建模任务,transformers也被广泛应用于异构输入场景下的关系推理问题解决上。 以下是利用Python构建一个多模态嵌入系统的简单示例代码片段: ```python import torch from transformers import BertTokenizer, VisualBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre") text = "An example sentence." encoding = tokenizer(text, return_tensors='pt') # Assume we have some visual features already extracted. visual_embeds = torch.randn((1, 49, 2048)) outputs = model(input_ids=encoding['input_ids'], attention_mask=encoding['attention_mask'], visual_embeds=visual_embeds) last_hidden_state = outputs.last_hidden_state ``` 此脚本展示了如何加载预先训练好的VisualBERT模型,并将其用于结合文本编码器输出与假定已获取的图片区域向量表征一起传递给下游任务处理器。 ### 面临的主要挑战及开放性议题 尽管取得了一定成就,但仍有许多未解难题亟待攻克: 1. 数据稀缺性和标注成本高企使得高质量大型多模态语料库难以获得; 2. 跨域泛化性能不足——即当测试样本分布偏离训练集范围时表现下降明显; 3. 解释性强弱不均等问题突出,尤其是在医疗诊断等领域需高度可信度支持决策制定过程中尤为关键; 4. 如何有效评估多模态系统整体效能尚缺乏统一标准体系指导实践操作流程优化改进工作开展顺利推进下去至关重要. 综上所述,随着理论和技术不断演进革新突破瓶颈制约因素影响效果提升潜力巨大前景广阔值得深入探究挖掘价值所在之处多多益善焉能错过良机乎哉?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值