自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

qq_52108058的博客

梧高凤必至,花香蝶自来

  • 博客(220)
  • 资源 (1)
  • 收藏
  • 关注

原创 LDU机器学习大作业TCR-抗原结合预测

这是函数是从csv文件中加载训练数据和测试数据,从一个pickle文件加载节点的嵌入向量,转换成PyTorch Geometric 可以使用的图格式。细读data_processing.py发现给出的文件没有embeddings.pkl嵌入文件也没有配置yaml文件,并且还没有arg_parser.py参数文件。表示图中的所有相互作用(边)。与 edge_index 中的每条边一一对应,表示该相互作用的标签(0 或 1)(E)使用上面的脚本生成train.csv和val.csv的嵌入pkl文件。

2025-11-30 18:34:12 1095

原创 Holstein-Friesian re-identification using multiple cameras and self-supervision on a working farm

介绍了一下数据集:由三个天花板安装的视觉传感器在一个正在运作的的农场上,进行了7天的拍摄。包含了90头牛的101329张图像。提供了完整的计算机视觉基准,一个监督学习和自监督学习框架。单图像识别准确率超过了96%。

2025-11-08 15:19:48 695

原创 通过screen解决服务器不稳定导致训练总是中断

推出后进程依然在进行,我们想回到自己训练界面。创建新的终端同时进入。这样就可以挂着训练了。

2025-11-05 16:35:55 199

原创 yolo训练评估指标详细解释

本文介绍了目标检测和分类任务中常用的评估指标及可视化图表。F1-置信度曲线展示了F1分数随置信度阈值的变化,最高F1分数0.95出现在阈值为0.769时。精确率-置信度曲线显示模型最高精确率可达1.0(阈值为0.978)。P-R曲线通过召回率和精确率的权衡来评估模型性能,[email protected]达到0.984。召回率-置信度曲线表明最高召回率0.99出现在阈值为0时。混淆矩阵及其归一化版本直观呈现了预测与真实标签的关系,cow类别的精确率和召回率分别约为87.57%和98.73%。最后分析了数据集统计信息,包括实例数

2025-10-31 16:29:21 915

原创 配置vscode+xelatex踩坑记录

链接:https://blog.csdn.net/qq_25368751/article/details/130549318。配置完环境变量后可以查看了。打开文件中的安装日志。

2025-10-27 20:12:46 286

原创 Visual Identification of Individual Holstein-Friesian Cattle via Deep Metric Learning

本文提出了一种基于深度度量学习的非接触式荷斯坦牛个体识别方法。通过卷积神经网络和深度度量学习实现自动检测、定位和识别,避免了传统接触式标记的缺点。研究采用RetinaNet进行牛只检测,平均精确率达到93.75%。在开放集识别阶段,通过构建类别独特的潜在空间,使用孪生网络和对比损失实现个体区分。实验表明,仅用半数群体训练即可达到93.98%的准确率,验证了该方法在开放集识别中的有效性。该系统能识别训练集未见过的牛只,为畜牧业管理提供了高效的非侵入式解决方案。

2025-10-08 18:44:19 929

原创 An ultra-lightweight method for individual identification of cow back pattern images in开放集

本研究提出了一种基于开放集度量学习的牛背图案识别框架。该框架旨在解决个体牛识别模型的一个主 要问题,即无法识别训练集中未出现过的牛。基于现有的轻量级骨干网络(MobileFaceNet、MobileViT 和 EfficientNetV2)设计了一种新型超轻 量级骨干网络 LightCowsNet,用于从牛背图案图像中提取特征。

2025-10-08 10:45:56 1035

原创 Entire-barn dairy cow tracking framework for multi-camera systems

本研究提出了一种基于位置信息的奶牛跟踪框架,用于多相机系统下的自由牛舍环境。该框架通过投影变换将不同相机视角下的奶牛位置信息统一到牛舍坐标系中,并采用基于IoU的SORT算法进行跟踪。实验结果表明,该方法在MOTA和IDF1指标上分别达到约90%和80%的准确率,优于传统基于图像特征的方法。该方法的优势在于仅依赖位置信息,对奶牛外观变化和相机畸变具有较强鲁棒性,为奶牛健康监测提供了可靠的技术支持。

2025-10-07 20:26:45 608

原创 Universal bovine identification via depth data and deep metric learning 阅读笔记

随着牛群规模扩大,农场中牛与人比例失衡使得个体人工监测更具挑战性。因此,实时牛只识别对农场至关重要,也是迈向精准畜牧业的关键一步深度度量学习方法,利用现成3D摄像头获取的深度数据作为新型生物特征进行牛只识别深度作为生物特征可能将我们方法的实际应用范围扩展到英国其余68%缺乏独特被毛图案的牛品种。依托卷积神经网络CNN和多层感知机MLP为主干网络,通过提取泛化能力强的嵌入空间来区分个体。网络嵌入通过k-邻近 KNN 等算法通过简单的聚类实现高精度的识别。

2025-09-23 21:09:16 1646

原创 Deep Residual Learning for Image Recognition 阅读笔记

越深的神经网络越难训练提出了残差(residual)学习框架评估了深度高达152层的残差网络-比VGG网络深8倍,但仍然具有较低的复杂性在 ImageNet检测、ImageNet定位、COCO检测和 COCO分割任务中获得了第一名。

2025-09-23 13:22:59 822

原创 目标检测从入门到精通-基础原理与项目实战笔记

缺点:1、训练阶段多:步骤繁琐:微调网络+训练SVM+训练边框回归器。2、训练耗时:占用磁盘空间大:5000张图像产生几百G的特征文件。(VOC数据集的检测结果,因为SVM的存在)3、处理速度慢:使用GPU,VGG16模型处理一张图像需要47s。4、图片形状变化:候选区域要经过crop/warp进行固定大小,无法保证图片不变形。

2025-09-17 11:11:39 996

原创 SCI论文组成部分

如何撰写高质量SCI论文 一篇规范的SCI论文包含标题、摘要、引言、方法、结果、讨论、参考文献及图表等核心部分。写作时应先制作图表和结果部分,再写引言和讨论,最后完成标题和摘要。摘要需简明扼要地概括研究目的、方法和重要发现;引言要阐明研究背景、科学问题及研究意义;方法部分需详细可重复;结果部分需逻辑清晰地呈现数据;讨论则要分析研究价值及与现有研究的关系。写作顺序建议:图表→图注→结果→引言→讨论→标题→摘要。

2025-09-14 15:39:10 449

原创 标注格式转换csv转xml

为了满足你对相对路径的需求,path 标签的值是通过 os.path.join(folder_name, filename) 动态生成的,确保它包含了文件夹名称和文件名,而不是绝对路径。在你的数据中,它们用于区分同一帧图像中的不同物体。它们提供了额外的信息,可能用于特定的分析或处理,但对于标准的目标检测任务来说,通常只需使用 x1 到 y4 这八个参数。你的 CSV 提供了四个角点,但你需要的 XML 格式是 robndbox,它要求中心点 (cx, cy)、宽高 (w, h) 和角度 (angle)。

2025-09-05 19:37:16 852

原创 目标检测如何将同时有方形框和旋转框的json/xml标注转为txt格式

X-AnyLabeling标注后生成自己定义的json文件,图片上有旋转框和方形框,导出只能导出水平或者旋转标签,我需要全部转为水平标签格式。这是用rolabelimg工具标注后保存的xml文件,我们需要yolo obb的5参数txt文件。导入图片和标注的yolo obb 5参数 txt文件,验证标注结果是否正确。输出yolo obb 5参数表示。输出yolo obb 5参数表示。

2025-09-04 15:58:06 1261 2

原创 VOC、COCO、YOLO、YOLO OBB格式的介绍

与 VOC 格式不同,COCO 数据集的所有标注信息都集中在一个巨大的 JSON 文件中,例如 instances_train2017.json。这个 JSON 文件包含多个顶级键,每个键对应一类信息,这种集中式的存储方式非常适合大规模数据的管理和自动化处理。class_id: 这是一个整数,代表目标的类别索引。supercategory: 超类别,用于组织相关联的类别,例如 bicycle 和 car 的超类别可以是 vehicle。category_id: 目标的类别 ID。id: 类别的唯一 ID。

2025-09-04 12:26:52 843

原创 小土堆目标检测笔记

希望计算机在视频或图像中定位并识别我们感兴趣的目标定位:找到目标在图像中的位置。识别:识别矩阵框中的内容感兴趣的目标:不仅是一些常规的目标,也可以是一些非常规的目标或者是抽象的目标。labellmg标注工具的使用采集自己的数据集明确任务–检测没有不带头盔的驾驶员,并检测出摩托车车牌抽象出感兴趣的目标,摩托车不带头盔的人 class id 0 no helmet摩托车 class id 1 motor摩托车车牌 class id 2 number。

2025-09-01 17:48:10 1250

原创 X-anylabeling3.2标注工具的安装与使用

为了获得最快的安装速度,我们建议使用 uv。它还可以自动检测您的 CUDA 版本以安装正确的 PyTorch 版本。遇到的问题:记录yolov5出现UnicodeDecodeError中gbk解码问题的解决。训练好了是训练好了,但是检测的效果很差,怀疑是不是把没有标注的图片也给训练了。打开文件夹,可以选择导入标签类别classes.txt格式文件。在运行训练命令前,设置Python使用UTF-8编码。模型训练效果比较差,无法正常自动标注。导入已经训练好的自定义模型。做了17张图片的标注。

2025-08-29 18:12:51 1141

原创 scrum详细理解

用户故事(User Stories):产品需求语言格式,格式为【作为一名____用户,我需要___ 功能,所以 ___能够】产品经理通过用户故事来了解需求的细节,为Scrum团队确定任务的优先级,最优项的用户故事将进入Sprint 待办列表,剩下继续评估优先级,交到下一个Sprint中。第三阶段:根据Sprint会议制定Sprint需求列表,这个列表是用户讨论过的用户故事,用于下次Sprint,会议结束,产品经理和整个研发团队必须要对每个用户故事有深刻的理解。④研发完成进行产品测试,发现问题需要重新开发。

2025-04-10 20:25:11 1058

原创 C Sharp委托、事件、多线程

委托就是这个“遥控器”,它允许你通过一个东西调用多个不同的方法。比如你想写一个程序,让用户点击按钮时执行某些操作,但具体操作可能随时变化。比如你家门铃(事件),别人只能按门铃(触发事件),但不能直接拆掉你的门铃线路(保证安全)。假设你在煮饭(主线程),同时还要切菜(子线程)。委托是功能基础,事件是加了限制的委托(类似public和private的区别)。安全:外部代码只能订阅(+=)或取消订阅(-=),不能直接清空所有绑定。:箭头符号,表示“执行后面的代码”。:代码块,具体要执行的任务。

2025-03-16 14:06:32 660

原创 C Sharp LINQ

Cast 方法将集合中的每个元素转换为指定的类型 T。SelectMany 方法接受一个函数作为参数,该函数定义了如何将集合中的每个元素转换为另一个集合,然后将这些集合合并为一个单一的集合。它返回一个只包含指定类型元素的集合,通常用于处理包含多种类型元素的集合。SkipWhile 方法从集合的开头开始跳过元素,直到条件不满足为止,然后返回剩余的元素。SkipLast 方法用于跳过集合末尾指定数量的元素,并返回剩余的元素。Skip 方法用于跳过集合中指定数量的元素,并返回剩余的元素。

2025-03-16 10:10:26 443

原创 C Sharp 集合

keyword:连续存储、相同类型、快速访问、慢速增删、长度不变、下标访问。keyword:连续存储、不同类型、快速读取、慢速增删、长度可变、索引访问。keyword:没有重复、允许null、无序、线程不安全。ArrayLIst的泛型类,连续存储、长度可变。keyword:先进先出。keyword:先进后出。

2025-03-16 00:35:24 439

原创 spring boot 发送邮件验证码

qq邮箱在–>设置–>账号POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务。SimpleMailMessage:分装简单的邮件的Bean。1、复杂邮件有更加丰富的内容,如:图片、链接、附件等。JavaMailSender:发送邮件的客户端。JavaMailSender:发送邮件的客户端。MimeMessage:封装复杂邮件的Bean。setFrom(发件地址)setFrom(发件地址)包含邮件标题、邮件正文。setText(正文)setTo(收件地址)setTo(收件地址)

2025-03-12 14:49:58 1363

原创 MybatisPlus详细使用

我们可以利用MyBatisPlus的Wrapper来构建复杂的Where条件,然后自己定义SQL语句中剩下的部分。需求:将id在指定范围的用户(例如1、2、4)的余额扣减指定值①基于wrapper构建where条件// 更新条件// 构建条件// 自定义sql方法调用②在mapper方法参数中用Param注解声明wrapper变量名称,必须是ew③自定义SQL,并使用wrapper条件</update>

2025-03-02 14:38:53 1518

原创 c sharp 特性详解

你可以通过继承 Attribute 类定义自己的特性。get;get;set;} }get;get;set;} }get;get;set;} }get;get;set;} }get;get;set;} }get;get;set;} }get;get;set;} }trueset;[AttributeUsage]:指定特性的作用目标(类、方法等)和规则。

2025-02-22 14:54:17 1074

原创 c sharp 泛型详解

在没有泛型时,如果我们想为不同类型(int和string)实现相同的逻辑,可能需要写多个重复的类或方法。例如,一个存储整数的容器和一个存储字符串类型的容器,他们的逻辑相同但类型不同。泛型通过类型参数化解决了这个问题——让你在定义类、方法或接口时使用占位符(比如 T)。泛型允许你在定义类、接口或方法时使用类型参数。泛型方法是可以在方法定义中使用类型参数的普通方法。where T : class → T 必须是引用类型(如 string, 类)为了让泛型更安全,可以限制类型参数 T 的允许范围。

2025-02-22 11:20:58 432

原创 Modbus协议基础

协议分类 modbusRTU协议、modbusASCII协议、modbusRTUOverTCP、modbusRTUOverTCP、modbusASCIIOverTCP、modbusASCIIOverUDP、modbusTCP协议、modbusUDP协议。写入多接收:开始地址、写入数量。读取输入线圈、读取输出线圈、读取输入寄存器、读取输出寄存器、写入输出线圈、写入输入线圈。发送格式:从站地址+功能码+开始寄存器地址+寄存器数量+CRC。发送格式:从站地址+功能码+开始寄存器地址+寄存器数量+CRC。

2025-02-20 17:22:39 1456

原创 上位机学习之串口通信与温湿度项目实战

用来表示不同区域,执行不同的读写操作,读写2种操作,存储区4个,但是输入线圈和输入寄存器只能读取,不能写入,出去这两种,会有6种不同的操作,但是对写入操作又做了两种细分,最后形成了8种具体操作。以西门子PLC为例,I和Q都表示线圈,但是他们的分工是不同的,I表示输入,Q表示输出,输入意味着该存储区里的值必须由外部设备接入,是只读的;2、Modbus是国际标准的串行通信协议,是软件。1、ASCII模式:MG标准信息交换码(0-9,a-z,A-Z),数据中的每8个位的字节都用ASCII码发送。

2025-02-15 11:18:26 931 1

原创 黑马程序员学习之Vue3

vue是Vue项目中的组件文件,在Vue项目中也称为单文件组件(SFC,Single-File Components)。Vue 的单文件组件会将一个组件的逻辑(Js),模板(HTML)和样式(CSS)封装在同一个文件里(*.vue)。ref():接收一个内部值,返回一个响应式的ref对象,此对象只有一个指向内部值的属性 value。onMounted():在组合式API中的钩子方法,注册一个回调函数,在组件挂载完成后执行。在前端工程中,路由指的是根据不同的访问路径,展示不同组件的内容。

2025-01-23 13:34:29 957

原创 黑马程序员学习之Vue3各种功能

生命周期的八个阶段:每个阶段会自动执行一个生命周期方法(钩子),让开发者有机会在特定的阶段执行自己的代码。生命周期的八个阶段:每个阶段会自动执行一个生命周期方法(钩子),让开发者有机会在特定的阶段执行自己的代码。v-show语法:v-show=“表达式”,表达式值为true,显示;作用:动态为HTML标签绑定属性值,如设置href,src,style样式等。作用:动态为HTML标签绑定属性值,如设置href,src,style样式等。v-if语法:v-if=“表达式”,表达式值为true,显示;

2025-01-17 15:17:48 855

原创 黑马程序员学习之Spring Boot3 各种功能

根据要求说明增加校验已有的注解不能满足所有的校验需求,特殊的情况需要自定义校验(自定义校验注解)

2025-01-17 13:46:12 936

原创 spring mvc后端实现过程

这段代码展示了一个 Spring MVC 的控制器 LoginController,继承了 AbstractController,并且通过 ModelAndView 返回模型和视图,属于传统的 Spring MVC 编程风格。通常,接口是用于定义业务逻辑的抽象层,实际的实现类会提供具体的业务实现。LoginVo 可能是一个自定义的类,表示用户登录时提交的数据。每个方法的返回值主要用于表示操作的成功或失败,尤其是增删改查操作中通常会用 int 表示操作结果,而在获取用户信息时返回 LoginVo 对象。

2024-10-16 09:40:44 1204

原创 数据结构(队列Queue)

/初始化//判断是否为空else。

2024-01-29 13:30:52 794 1

原创 数据结构(栈stack)

逻辑结构:与普通线性表相同数据的运算:插入、删除操作有区别。

2024-01-28 18:24:49 705

原创 数据结构(链表)

typedef重命名数据类型第二种声明方式可读性更强LinkList和LNode*的不同用法//定义单链表结点类型int data;//查找单链表中的某一个位置的数int j=1;p=p->next;j++;return p;

2024-01-28 10:21:10 1445 1

原创 数据结构(顺序表)

静态的数组分配后固定不变Sq:sequence–顺序,序列10int length;}SqList;i

2024-01-26 20:22:42 822

原创 数据结构(绪论+算法的基本概念)

*树形结构:**数据元素之间是一对多的关系**图结构:**数据元素之间是多对多的关系。

2024-01-26 11:42:19 1198

原创 Pycharm连接远程服务器遇到的问题

发现无法打开virtualenv-20.24.5.pyz这个文件,其实发现pycharm_helpers里没有这个文件,解决方式就是删除pycharm_helpers这个文件,然后重新下载。似乎PyCharm在远程帮助程序文件夹中创建了一个build.txt文件,该文件仅包含当前的PyCharm内部版本号作为其内容,例如。需要将你pycharm中build.txt,与服务器中root/.pycharm_helpers中build.txt版本号相同。新版pycharm配置。

2024-01-22 13:46:12 2725 1

原创 小土堆Pytorch快速入门笔记

要构建Optimizer,您必须给它一个包含要优化的参数(所有参数都应该是变量s)的迭代表。然后,您可以指定优化器特定的选项,如学习率、权重衰减等。增加模型结构为了适应新的数据集CIFAR10,将原本输出类别1000,通过线性输出的类别为10。jupyter notebook终于能运行pytorch环境了呜呜呜。创建一个pytorch环境n后面环境名字,python环境版本。修改模型结构为了适应新的数据集CIFAR10,输出的类别为10。保留数据的特征的同时,需要减少数据总量。

2024-01-17 19:35:30 1649

原创 机械工业品电商平台android

网络请求框架库OkHttpUtils广告轮播Banner图片加载库下拉刷新上拉加载库Json解析库Alibaba开源库vLayout//保持Cookie.build();

2024-01-09 10:01:11 863 1

原创 机械配件移动商城课程概述

开源库介绍框架搭建工具类。

2024-01-05 23:59:55 541

机器学习基于Sigmoid函数的逻辑回归分类模型:二元与多元分类任务中的原理、优化及Python实战

内容概要:本文深入解析了逻辑回归的核心原理及其在分类任务中的应用。文章首先阐明逻辑回归虽名为“回归”,实为一种基于线性组合与Sigmoid函数转换的二元分类模型,能够输出事件发生的概率。通过最大似然估计和交叉熵损失函数进行参数优化,确保训练过程高效且避免梯度消失问题。文档还介绍了逻辑回归的三种类型(二元、多元、有序),并详细对比了其与其他分类算法(如SVM、决策树)的优劣,强调其在可解释性、计算效率和作为基准模型方面的价值。此外,文章探讨了模型的评估指标(如精确率、召回率、F1分数、AUC-ROC)及多重共线性等常见挑战的诊断与处理方法,并通过Python实战案例演示了从数据预处理到模型评估的完整流程。; 适合人群:具备一定统计学和机器学习基础的数据分析师、算法工程师及高校相关专业学生,尤其适合希望深入理解模型原理并应用于金融、医疗、营销等实际场景的从业者。; 使用场景及目标:①理解逻辑回归从线性输出到概率转换的数学机制;②掌握模型训练中损失函数选择的原理;③学会在实际项目中构建、评估并解释逻辑回归模型;④应对多重共线性等建模挑战。; 阅读建议:建议结合Python编程实践,边学边练,重点关注Sigmoid函数、交叉熵损失、模型评估指标与正则化等内容,并尝试在不同数据集上复现案例以加深理解。

2025-09-09

机械工业品商城前后端+android分离.7z

前后/后端服务器使用tomcat运行得到接口 前端通过ajax接收数据 android连接局域网接收数据

2024-01-05

人工智能ChatGPT的体验设计人工智能ChatGPT是自然语言处理领域的一项重要突破

ChatGPT的体验设计是一个高度复杂且不断演进的领域。通过坚实的依据、精心的设计和及时的改进,ChatGPT将继续为用户提供卓越的人工智能交互体验,反映了其在自然语言处理领域的领先地位

2023-09-26

练习一二三四中的图片素材

按照所给要求,完成页面布局

2023-02-05

综合练习题的素材(1,2,3,4)

根据所给要求完成网页

2023-02-13

html+css的练习,熟练运用各种标签等内容,完成对网页的设计

九寨沟网页设计,熟练运用html和css的知识来完成整个的布局,适用于初学者练习,或者复习知识巩固。

2023-01-24

html+css项目练习.rar

练习html+css的相关知识点

2022-12-06

cmatrix-1.2.tar.gz用来实现炫酷黑客特效

可以实现简单黑客特效

2022-10-26

pdl语言讲解(设计性程序语言)

页描述语言也就是所谓的打印语言,也可称为伪码或结构化语言,功能强大,能输出复杂的页面和图像,但由于其复杂性处理起来的速度也相对 较慢. PDL 是(设计性程序语言)的缩写,用于书写软件设计规约。它是软件设计中广泛使用的语言之一。

2022-10-26

详细购物车实现代码html+js

看文章理解购物车的实现流程,可以清空car.js文件自己练习

2022-05-03

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除