毫米波雷达学习(二)——IF信号相位

本文围绕毫米波雷达展开学习,介绍了IF信号相位的重要性,研究相位需用傅里叶变换。探讨物体移动时IF的变化,得出IF信号相位对物体距离微小变化敏感、频率不敏感的结论。还阐述了测速思想,以及如何测量振荡物体,通过相位差计算物体速度。

系列文章目录

毫米波雷达学习(一)——范围估计
毫米波雷达学习(二)——IF信号相位
毫米波雷达学习(三)——速度估计
毫米波雷达学习(四)——系统设计讨论
毫米波雷达学习(五)——角度估计


文章目录

  • 系列文章目录
  • 一、IF信号的相位
  • 二、物体移动一小段距离,IF如何变化?
  • 三、移动一毫米,IF相位怎么变?
  • 四、测速思想
  • 五、测量振荡物体


一、IF信号的相位

相位的重要性:帮助了解FMCW雷达响应极小位移的能力。凭此雷达可以快速而且准确测量物体的速度。这是作为检测心跳与振动检测中雷达的使用基础。

在研究相位的时候,需要使用傅里叶变换,时域中正弦波图像转换到频域会产生一个尖峰,这个峰的位置与正弦波频率相对应,频域信号不仅包含振幅,也包含了相位的复数

如下图,第二个比第一个相位超前90度。
请添加图片描述
在先前我们讲了FMCW,它可以用频率时间f-t图或者A-t图表示:
在这里插入图片描述
在这里插入图片描述
同时了解到TX和RX进入混频器,产生一个IF信号,这个IF信号频率恒定(因为TX和RX差值恒定)为Sτ或等效S2d/c

下面三幅图可以清晰展示TX、RX和IF的关系
请添加图片描述
这样就可以将IF的正弦波方程写出了
请添加图片描述

请添加图片描述

二、物体移动一小段距离,IF如何变化?

请添加图片描述
延迟Δτ后,TX的D点相位将为先前A点的相位,具有额外相位偏移2πfcΔτ(由于Δτ=S2d/c,所以额外相位偏移也等于4πΔd / λ),RX接收波形仍然不会改变的,只有相位改变,那么IF也会延迟Δτ,且IF初始的幅值也会变为在τ+Δτ处新的TX幅值-RX幅值。

在这里插入图片描述

三、移动一毫米,IF相位怎么变?

一个斜率为每毫秒 50MHz 且持续时间为 40 毫米的线性 调频脉冲,如果该雷达前方的物体 位置改变 1 毫米,会发生什么情况?
对于77GHz雷达,1mm对应其1/4波长。
直接代入上面两公式,代入相位变化公式可以得到相位变化180度。
代入频率公式,S=50MHz/ms,d=1mm,结果为333Hz。虽然这个值看起来比较大,但是由于Tc仅仅为40us,333Hz转换过去仅仅对应其0.013个周期,忽略不计。
得出结论:IF 信号的相位对物体 距离的微小变化非常敏感,频率不敏感。
请添加图片描述

四、测速思想

测速思想:发射两个间隔时间为 Tc 的线性调频脉冲,其中每个线性调频脉冲相对应的距离 FFT 将在相同的位置具有峰值,但是相位不同,这两个峰值的相位之间的 测量相位差 ω 将 与物体的运动直接对应。

详细解释:一物体速度为v,Tc时间段内移动了vTc,发射的两个脉冲直接峰值的相位差=4πvTc/λ。
故可以得到v的公式
在这里插入图片描述

五、测量振荡物体

在这里插入图片描述
将一个雷达放置在该振荡的 物体前方并发射一系列 等间隔的线性调频脉冲,每个 TX 线性调频脉冲会产生一个反射线性调频脉冲,并且 经处理的 IF 信号会在距离 FFT 中 产生一个峰值。由于Δd很小,对频率影响可以忽略,但是对相位有很大影响。 由下图可以看出相位最大偏移与Δd有关。
在这里插入图片描述

我会坚持学习并更新,非常感谢各位的观看。

### 使用毫米波雷达测量人体生命体征信号的方法和技术实现 #### 1. 原理概述 毫米波雷达通过发射高频电磁波并接收反射回来的信号来感知目标物体的距离、速度和角度等信息。当用于监测人体生命体征时,主要依赖于捕捉由胸腔起伏引起的微小距离变化,进而推算出呼吸率和心率。 #### 2. 数据采集阶段 射频模块发出连续调频脉冲串(FMCW),这些脉冲遇到障碍物会返回至收发天线阵列,在此过程中产生的回波包含了关于被测对象运动状态的信息[^1]。具体来说: - **发射端**:产生具有特定带宽和周期性的线性调频信号; - **接收端**:获取经由不同路径传播后的多普勒效应影响下的混频产物——即中频(IQ)数据流; ```python import numpy as np def generate_fmcw_signal(frequency_start, frequency_end, sweep_time): t = np.linspace(0, sweep_time, int(sweep_time * sampling_rate)) f_t = frequency_start + (frequency_end - frequency_start) / sweep_time * t signal = np.exp(1j * 2 * np.pi * f_t * t) return signal ``` #### 3. 中频信号处理 为了从原始IQ样本中提取有用的生命体征特征,需经历一系列预处理操作,包括但不限于去噪滤波、背景消除以及相位解缠绕等步骤。之后采用快速傅里叶变换(FFT),将时间域内的复杂波动转换成易于解析的频谱图形式[^2]。 ```matlab % MATLAB Code Snippet for FFT Processing function spectrum = process_if_data(ifData) % Apply window function to reduce spectral leakage winFunc = hamming(length(ifData)); % Perform Fast Fourier Transform on the IF data after applying a Hamming Window fftResult = fftshift(abs(fft(ifData .* winFunc))); % Normalize and smooth the result before returning it spectrum = smooth(normalize(fftResult), 'moving', 5); end ``` #### 4. 特征识别算法 最终利用机器学习模型或传统阈值判断法区分正常范围内外的变化模式,从而精准定位每一次心跳与呼吸事件的发生时刻及其间隔长度,完成整个流程闭环控制[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知何人

万分感谢诸位观看

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值