
YAML Ain't Markup Language (YAML™)
Version 1.1

Working Draft 2004-12-28

Oren Ben-Kiki <oren@ben-kiki.org>
Clark Evans <cce@clarkevans.com>

Brian Ingerson <ingy@ttul.org>

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Ain't Markup Language (YAML™) Version 1.1
Working Draft 2004-12-28
by Oren Ben-Kiki, Clark Evans, and Brian Ingerson
Copyright © 2001-2004 Oren Ben-Kiki, Clark Evans, Brian Ingerson

Status of this Document

This specification is a draft reflecting consensus reached by members of the yaml-core mailing list
[http://lists.sourceforge.net/lists/listinfo/yaml-core]. Any questions regarding this draft should be raised on this list. We
expect all further changes will be strictly limited to wording corrections and fixing production bugs.

We wish to thank implementers who have tirelessly tracked earlier versions of this specification, and our fabulous user
community whose feedback has both validated and clarified our direction.

Abstract

YAML™ (rhymes with “camel”) is a human-friendly, cross language, Unicode based data serialization language designed
around the common native data structures of agile programming languages. It is broadly useful for programming needs
ranging from configuration files to Internet messaging to object persistence to data auditing. Together with the Unicode
standard for characters [http://www.unicode.org/], this specification provides all the information necessary to understand
YAML Version 1.1 and to creating programs that process YAML information.

This document may be freely copied provided it is not modified.

XSL•FO
RenderX

http://lists.sourceforge.net/lists/listinfo/yaml-core
http://www.unicode.org/
http://www.unicode.org/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents
1. Introduction .. 1

1.1. Goals .. 1
1.2. Prior Art .. 1
1.3. Relation to XML ... 2
1.4. Terminology ... 3

2. Preview .. 4
2.1. Collections ... 4
2.2. Structures ... 5
2.3. Scalars ... 6
2.4. Tags .. 7
2.5. Full Length Example .. 9

3. Processing YAML Information ... 10
3.1. Processes .. 10

3.1.1. Represent ... 10
3.1.2. Serialize .. 11
3.1.3. Present .. 11
3.1.4. Parse ... 11
3.1.5. Compose .. 11
3.1.6. Construct ... 11

3.2. Information Models .. 11
3.2.1. Representation Graph ... 12

3.2.1.1. Nodes ... 13
3.2.1.2. Tags ... 13
3.2.1.3. Nodes Comparison .. 14

3.2.2. Serialization Tree .. 14
3.2.2.1. Keys Order .. 15
3.2.2.2. Anchors and Aliases .. 15

3.2.3. Presentation Stream ... 15
3.2.3.1. Node Styles ... 16
3.2.3.2. Scalar Formats .. 17
3.2.3.3. Comments ... 17
3.2.3.4. Directives .. 17

3.3. Loading Failure Points .. 17
3.3.1. Well-Formed and Identified ... 18
3.3.2. Resolved .. 18
3.3.3. Recognized and Valid .. 19
3.3.4. Available ... 19

4. Syntax .. 20
4.1. Characters .. 20

4.1.1. Character Set .. 20
4.1.2. Character Encoding .. 21
4.1.3. Indicator Characters ... 21
4.1.4. Line Break Characters .. 25
4.1.5. Miscellaneous Characters .. 26
4.1.6. Escape Sequences .. 28

4.2. Syntax Primitives ... 30
4.2.1. Production Parameters .. 30
4.2.2. Indentation Spaces ... 31
4.2.3. Comments .. 32
4.2.4. Separation Spaces .. 33
4.2.5. Ignored Line Prefix .. 34

iii

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.2.6. Line Folding ... 35
4.3. YAML Character Stream ... 36

4.3.1. Directives .. 37
4.3.1.1. YAML Directive ... 37
4.3.1.2. TAG Directive .. 38

4.3.1.2.1. Tag Prefixes .. 38
4.3.1.2.2. Tag Handles .. 39

4.3.2. Document Boundary Markers .. 40
4.3.3. Documents ... 41
4.3.4. Complete Stream ... 42

4.4. Nodes .. 43
4.4.1. Node Anchors ... 44
4.4.2. Node Tags .. 44
4.4.3. Node Content ... 47
4.4.4. Alias Nodes .. 49
4.4.5. Complete Nodes .. 49

4.4.5.1. Flow Nodes ... 49
4.4.5.2. Block Nodes .. 50

4.5. Scalar Styles ... 51
4.5.1. Flow Scalar Styles ... 51

4.5.1.1. Double Quoted ... 51
4.5.1.2. Single Quoted .. 54
4.5.1.3. Plain ... 57

4.5.2. Block Scalar Header ... 60
4.5.2.1. Block Style Indicator ... 61
4.5.2.2. Block Indentation Indicator ... 61
4.5.2.3. Block Chomping Indicator .. 62

4.5.3. Block Scalar Styles .. 64
4.5.3.1. Literal ... 65
4.5.3.2. Folded .. 66

4.6. Collection Styles .. 69
4.6.1. Sequence Styles .. 69

4.6.1.1. Flow Sequences .. 69
4.6.1.2. Block Sequences ... 70

4.6.2. Mapping Styles ... 72
4.6.2.1. Flow Mappings ... 72
4.6.2.2. Block Mappings ... 76

Terms Index ... 79

iv

YAML Ain't Markup Lan-
guage (YAML™) Version 1.1

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1. Introduction
“YAML Ain't Markup Language” (abbreviated YAML) is a data serialization language designed to be human-friendly and
work well with modern programming languages for common everyday tasks. This specification is both an introduction to
the YAML language and the concepts supporting it and also a complete reference of the information needed to develop
applications for processing YAML.

Open, interoperable and readily understandable tools have advanced computing immensely. YAML was designed from
the start to be useful and friendly to people working with data. It uses Unicode printable characters, some of which provide
structural information and the rest containing the data itself. YAML achieves a unique cleanness by minimizing the amount
of structural characters, and allowing the data to show itself in a natural and meaningful way. For example, indentation
may be used for structure, colons separate mapping key: value pairs, and dashes are used to “bullet” lists.

There are myriad flavors of data structures, but they can all be adequately represented with three basic primitives: mappings
(hashes/dictionaries), sequences (arrays/lists) and scalars (strings/numbers). YAML leverages these primitives and adds a
simple typing system and aliasing mechanism to form a complete language for serializing any data structure. While most
programming languages can use YAML for data serialization, YAML excels in those languages that are fundamentally
built around the three basic primitives. These include the new wave of agile languages such as Perl, Python, PHP, Ruby
and Javascript.

There are hundreds of different languages for programming, but only a handful of languages for storing and transferring
data. Even though its potential is virtually boundless, YAML was specifically created to work well for common use cases
such as: configuration files, log files, interprocess messaging, cross-language data sharing, object persistence and debugging
of complex data structures. When data is easy to view and understand, programming becomes a simpler task.

1.1. Goals
The design goals for YAML are:

1. YAML is easily readable by humans.

2. YAML matches the native data structures of agile languages.

3. YAML data is portable between programming languages.

4. YAML has a consistent model to support generic tools.

5. YAML supports one-pass processing.

6. YAML is expressive and extensible.

7. YAML is easy to implement and use.

1.2. Prior Art
YAML's initial direction was set by the data serialization and markup language discussions among SML-DEV members
[http://www.docuverse.com/smldev/]. Later on it directly incorporated experience from Brian Ingerson's Perl module
Data::Denter [http://search.cpan.org/doc/INGY/Data-Denter-0.13/Denter.pod]. Since then YAML has matured through
ideas and support from its user community.

YAML integrates and builds upon concepts described by C [http://cm.bell-labs.com/cm/cs/cbook/index.html], Java
[http://java.sun.com/], Perl [http://www.perl.org/], Python [http://www.python.org/], Ruby [http://www.ruby-lang.org/],
RFC0822 [http://www.ietf.org/rfc/rfc0822.txt] (MAIL), RFC1866 [http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt]

1

XSL•FO
RenderX

http://www.docuverse.com/smldev/
http://search.cpan.org/doc/INGY/Data-Denter-0.13/Denter.pod
http://cm.bell-labs.com/cm/cs/cbook/index.html
http://java.sun.com/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/
http://www.ietf.org/rfc/rfc0822.txt
http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

(HTML), RFC2045 [http://www.ietf.org/rfc/rfc2045.txt] (MIME), RFC2396 [http://www.ietf.org/rfc/rfc2396.txt] (URI),
XML [http://www.w3.org/TR/REC-xml.html], SAX [http://www.saxproject.org/] and SOAP [http://www.w3.org/TR/SOAP].

The syntax of YAML was motivated by Internet Mail (RFC0822) and remains partially compatible with that standard.
Further, borrowing from MIME (RFC2045), YAML's top-level production is a stream of independent documents; ideal
for message-based distributed processing systems.

YAML's indentation based scoping is similar to Python's (without the ambiguities caused by tabs). Indented blocks facilitate
easy inspection of the data's structure. YAML's literal style leverages this by enabling formatted text to be cleanly mixed
within an indented structure without troublesome escaping. YAML also allows the use of traditional indicator-based
scoping similar to Perl's. Such flow content can be freely nested inside indented blocks.

YAML's double quoted style uses familiar C-style escape sequences. This enables ASCII encoding of non-printable or 8-
bit (ISO 8859-1) characters such as “\x3B”. Non-printable 16-bit Unicode and 32-bit (ISO/IEC 10646) characters are
supported with escape sequences such as “\u003B” and “\U0000003B”.

Motivated by HTML's end-of-line normalization, YAML's line folding employs an intuitive method of handling line breaks.
A single line break is folded into a single space, while empty lines are interpreted as line break characters. This technique
allows for paragraphs to be word-wrapped without affecting the canonical form of the content.

YAML's core type system is based on the requirements of agile languages such as Perl, Python, and Ruby. YAML directly
supports both collection (mapping, sequence) and scalar content. Support for common types enables programmers to use
their language's native data structures for YAML manipulation, instead of requiring a special document object model
(DOM).

Like XML's SOAP, YAML supports serializing native graph data structures through an aliasing mechanism. Also like
SOAP, YAML provides for application-defined types. This allows YAML to represent rich data structures required for
modern distributed computing. YAML provides globally unique type names using a namespace mechanism inspired by
Java's DNS based package naming convention and XML's URI based namespaces.

YAML was designed to support incremental interfaces that includes both input pull-style and output push-style one-pass
(SAX-like) interfaces. Together these enable YAML to support the processing of large documents, such as a transaction
log, or continuous streams, such as a feed from a production machine.

1.3. Relation to XML
Newcomers to YAML often search for its correlation to the eXtensible Markup Language (XML). While the two languages
may actually compete in several application domains, there is no direct correlation between them.

YAML is primarily a data serialization language. XML was designed to be backwards compatible with the Standard Gen-
eralized Markup Language (SGML) and thus had many design constraints placed on it that YAML does not share. Inheriting
SGML's legacy, XML is designed to support structured documentation, where YAML is more closely targeted at data
structures and messaging. Where XML is a pioneer in many domains, YAML is the result of lessons learned from XML
and other technologies.

It should be mentioned that there are ongoing efforts to define standard XML/YAML mappings. This generally requires
that a subset of each language be used. For more information on using both XML and YAML, please visit ht-
tp://yaml.org/xml/index.html.

2

Introduction

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml.html
http://www.saxproject.org/
http://www.w3.org/TR/SOAP
http://yaml.org/xml/index.html
http://yaml.org/xml/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

1.4. Terminology
This specification uses key words based on RFC2119 [http://www.ietf.org/rfc/rfc2119.txt] to indicate requirement level.
In particular, the following words are used to describe the actions of a YAML processor:

May The word may, or the adjective optional, mean that conforming YAML processors are permitted, but need not
behave as described.

Should The word should, or the adjective recommended, mean that there could be reasons for a YAML processor to
deviate from the behavior described, but that such deviation could hurt interoperability and should therefore
be advertised with appropriate notice.

Must The word must, or the term required or shall, mean that the behavior described is an absolute requirement of
the specification.

3

Introduction

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2. Preview
This section provides a quick glimpse into the expressive power of YAML. It is not expected that the first-time reader grok
all of the examples. Rather, these selections are used as motivation for the remainder of the specification.

2.1. Collections
YAML's block collections use indentation for scope and begin each entry on its own line. Block sequences indicate each
entry with a dash and space (“-”). Mappings use a colon and space (“: ”) to mark each mapping key: value pair.

Example 2.2. Mapping Scalars to Scalars
(player statistics)

hr: 65
avg: 0.278
rbi: 147

Example 2.1. Sequence of Scalars
(ball players)

- Mark McGwire
- Sammy Sosa
- Ken Griffey

Example 2.4. Sequence of Mappings
(players' statistics)

-
 name: Mark McGwire
 hr: 65
 avg: 0.278
-
 name: Sammy Sosa
 hr: 63
 avg: 0.288

Example 2.3. Mapping Scalars to Sequences
(ball clubs in each league)

american:
 - Boston Red Sox
 - Detroit Tigers
 - New York Yankees
national:
 - New York Mets
 - Chicago Cubs
 - Atlanta Braves

YAML also has flow styles, using explicit indicators rather than indentation to denote scope. The flow sequence is written
as a comma separated list within square brackets. In a similar manner, the flow mapping uses curly braces.

Example 2.6. Mapping of Mappings

Mark McGwire: {hr: 65, avg: 0.278}
Sammy Sosa: {
 hr: 63,
 avg: 0.288
 }

Example 2.5. Sequence of Sequences

- [name , hr, avg]
- [Mark McGwire, 65, 0.278]
- [Sammy Sosa , 63, 0.288]

4

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

2.2. Structures
YAML uses three dashes (“---”) to separate documents within a stream. Three dots (“...”) indicate the end of a doc-
ument without starting a new one, for use in communication channels. Comment lines begin with the Octothorpe (usually
called the “hash” or “pound” sign - “#”).

Example 2.8. Play by Play Feed
from a Game

time: 20:03:20
player: Sammy Sosa
action: strike (miss)
...

time: 20:03:47
player: Sammy Sosa
action: grand slam
...

Example 2.7. Two Documents in a Stream
(each with a leading comment)

Ranking of 1998 home runs

- Mark McGwire
- Sammy Sosa
- Ken Griffey

Team ranking

- Chicago Cubs
- St Louis Cardinals

Repeated nodes are first identified by an anchor (marked with the ampersand - “&”), and are then aliased (referenced with
an asterisk - “*”) thereafter.

Example 2.10. Node for “Sammy Sosa”
appears twice in this document

hr:
 - Mark McGwire
 # Following node labeled SS
 - &SS Sammy Sosa
rbi:
 - *SS # Subsequent occurrence
 - Ken Griffey

Example 2.9. Single Document with
Two Comments

hr: # 1998 hr ranking
 - Mark McGwire
 - Sammy Sosa
rbi:
 # 1998 rbi ranking
 - Sammy Sosa
 - Ken Griffey

5

Preview

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

A question mark and space (“? ”) indicate a complex mapping key. Within a block collection, key: value pairs can start
immediately following the dash, colon or question mark.

Example 2.12. In-Line Nested Mapping

products purchased
- item : Super Hoop
 quantity: 1
- item : Basketball
 quantity: 4
- item : Big Shoes
 quantity: 1

Example 2.11. Mapping between Sequences

? - Detroit Tigers
 - Chicago cubs
:
 - 2001-07-23

? [New York Yankees,
 Atlanta Braves]
: [2001-07-02, 2001-08-12,
 2001-08-14]

2.3. Scalars
Scalar content can be written in block form using a literal style (“|”) where all line breaks count. Or they can be written
with the folded style (“>”) where each line break is folded to a space unless it ends an empty or a “more indented” line.

Example 2.14. In the plain scalar,
newlines become spaces

 Mark McGwire's
 year was crippled
 by a knee injury.

Example 2.13. In literals,
newlines are preserved

ASCII Art
--- |
 \//||\/||
 // || ||__

Example 2.16. Indentation determines scope

name: Mark McGwire
accomplishment: >
 Mark set a major league
 home run record in 1998.
stats: |
 65 Home Runs
 0.278 Batting Average

Example 2.15. Folded newlines preserved
for "more indented" and blank lines

>
 Sammy Sosa completed another
 fine season with great stats.

 63 Home Runs
 0.288 Batting Average

 What a year!

6

Preview

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML's flow scalars include the plain style (most examples thus far) and quoted styles. The double quoted style provides
escape sequences. The single quoted style is useful when escaping is not needed. All flow scalars can span multiple lines;
line breaks are always folded.

Example 2.18. Multi-line Flow Scalars

plain:
 This unquoted scalar
 spans many lines.

quoted: "So does this
 quoted scalar.\n"

Example 2.17. Quoted Scalars

unicode: "Sosa did fine.\u263A"
control: "\b1998\t1999\t2000\n"
hexesc: "\x13\x10 is \r\n"

single: '"Howdy!" he cried.'
quoted: ' # not a ''comment''.'
tie-fighter: '|\-*-/|'

2.4. Tags
In YAML, untagged nodes are given an type depending on the application. The examples in this specification generally
use the “seq” [http://yaml.org/type/seq.html], “map” [http://yaml.org/type/map.html] and
“str” [http://yaml.org/type/str.html] types from the YAML tag repository [http://yaml.org/type/index.html]. A few examples
also use the “int” [http://yaml.org/type/int.html] and “float” [http://yaml.org/type/float.html] types. The repository
includes additional types such as “null” [http://yaml.org/type/null.html], “bool” [http://yaml.org/type/bool.html],
“set” [http://yaml.org/type/set.html] and others.

Example 2.20. Floating Point

canonical: 1.23015e+3
exponential: 12.3015e+02
sexagecimal: 20:30.15
fixed: 1,230.15
negative infinity: -.inf
not a number: .NaN

Example 2.19. Integers

canonical: 12345
decimal: +12,345
sexagecimal: 3:25:45
octal: 014
hexadecimal: 0xC

Example 2.22. Timestamps

canonical: 2001-12-15T02:59:43.1Z
iso8601: 2001-12-14t21:59:43.10-05:00
spaced: 2001-12-14 21:59:43.10 -5
date: 2002-12-14

Example 2.21. Miscellaneous

null: ~
true: y
false: n
string: '12345'

7

Preview

XSL•FO
RenderX

http://yaml.org/type/seq.html
http://yaml.org/type/map.html
http://yaml.org/type/str.html
http://yaml.org/type/index.html
http://yaml.org/type/int.html
http://yaml.org/type/float.html
http://yaml.org/type/null.html
http://yaml.org/type/bool.html
http://yaml.org/type/set.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Explicit typing is denoted with a tag using the exclamantion point (“!”) symbol. Global tags are URIs and may be specified
in a shorthand form using a handle. Application-specific local tags may also be used.

Example 2.24. Global Tags

%TAG ! tag:clarkevans.com,2002:
--- !shape
 # Use the ! handle for presenting
 # tag:clarkevans.com,2002:circle
- !circle
 center: &ORIGIN {x: 73, y: 129}
 radius: 7
- !line
 start: *ORIGIN
 finish: { x: 89, y: 102 }
- !label
 start: *ORIGIN
 color: 0xFFEEBB
 text: Pretty vector drawing.

Example 2.23. Various Explicit Tags

not-date: !!str 2002-04-28

picture: !!binary |
 R0lGODlhDAAMAIQAAP//9/X
 17unp5WZmZgAAAOfn515eXv
 Pz7Y6OjuDg4J+fn5OTk6enp
 56enmleECcgggoBADs=

application specific tag: !something |
 The semantics of the tag
 above may be different for
 different documents.

Example 2.26. Ordered Mappings

ordered maps are represented as
a sequence of mappings, with
each mapping having one key
--- !!omap
- Mark McGwire: 65
- Sammy Sosa: 63
- Ken Griffy: 58

Example 2.25. Unordered Sets

sets are represented as a
mapping where each key is
associated with the empty string
--- !!set
? Mark McGwire
? Sammy Sosa
? Ken Griff

8

Preview

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

2.5. Full Length Example
Below are two full-length examples of YAML. On the left is a sample invoice; on the right is a sample log file.

Example 2.28. Log File

Time: 2001-11-23 15:01:42 -5
User: ed
Warning:
 This is an error message
 for the log file

Time: 2001-11-23 15:02:31 -5
User: ed
Warning:
 A slightly different error
 message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
 Unknown variable "bar"
Stack:
 - file: TopClass.py
 line: 23
 code: |
 x = MoreObject("345\n")
 - file: MoreClass.py
 line: 58
 code: |-
 foo = bar

Example 2.27. Invoice

--- !<tag:clarkevans.com,2002:invoice>
invoice: 34843
date : 2001-01-23
bill-to: &id001
 given : Chris
 family : Dumars
 address:
 lines: |
 458 Walkman Dr.
 Suite #292
 city : Royal Oak
 state : MI
 postal : 48046
ship-to: *id001
product:
 - sku : BL394D
 quantity : 4
 description : Basketball
 price : 450.00
 - sku : BL4438H
 quantity : 1
 description : Super Hoop
 price : 2392.00
tax : 251.42
total: 4443.52
comments:
 Late afternoon is best.
 Backup contact is Nancy
 Billsmer @ 338-4338.

9

Preview

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3. Processing YAML Information
YAML is both a text format and a method for presenting any data structure in this format. Therefore, this specification
defines two concepts: a class of data objects called YAML representations, and a syntax for presenting YAML representations
as a series of characters, called a YAML stream. A YAML processor is a tool for converting information between these
complementary views. It is assumed that a YAML processor does its work on behalf of another module, called an applic-
ation. This chapter describes the information structures a YAML processor must provide to or obtain from the application.

YAML information is used in two ways: for machine processing, and for human consumption. The challenge of reconciling
these two perspectives is best done in three distinct translation stages: representation, serialization, and presentation. Rep-
resentation addresses how YAML views native data structures to achieve portability between programming environments.
Serialization concerns itself with turning a YAML representation into a serial form, that is, a form with sequential access
constraints. Presentation deals with the formatting of a YAML serialization as a series of characters in a human-friendly
manner.

Figure 3.1. Processing Overview

A YAML processor need not expose the serialization or representation stages. It may translate directly between native data
structures and a character stream (dump and load in the diagram above). However, such a direct translation should take
place so that the native data structures are constructed only from information available in the representation.

3.1. Processes
This section details the processes shown in the diagram above. Note a YAML processor need not provide all these processes.
For example, a YAML library may provide only YAML input ability, for loading configuration files, or only output ability,
for sending data to other applications.

3.1.1. Represent
YAML represents any native data structure using three node kinds: the sequence, the mapping and the scalar. By sequence
we mean an ordered series of entries, by mapping we mean an unordered association of unique keys to values, and by
scalar we mean any datum with opaque structure presentable as a series of Unicode characters. Combined, these primitives
generate directed graph structures. These primitives were chosen because they are both powerful and familiar: the sequence
corresponds to a Perl array and a Python list, the mapping corresponds to a Perl hash table and a Python dictionary. The
scalar represents strings, integers, dates and other atomic data types.

10

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Each YAML node requires, in addition to its kind and content, a tag specifying its data type. Type specifiers are either
global URIs, or are local in scope to a single application. For example, an integer is represented in YAML with a scalar
plus the global tag “tag:yaml.org,2002:int”. Similarly, an invoice object, particular to a given organization, could
be represented as a mapping together with the local tag “!invoice”. This simple model can represent any data structure
independent of programming language.

3.1.2. Serialize
For sequential access mediums, such as an event callback API, a YAML representation must be serialized to an ordered
tree. Since in a YAML representation, mapping keys are unordered and nodes may be referenced more than once (have
more than one incoming “arrow”), the serialization process is required to impose an ordering on the mapping keys and to
replace the second and subsequent references to a given node with place holders called aliases. YAML does not specify
how these serialization details are chosen. It is up to the YAML processor to come up with human-friendly key order and
anchor names, possibly with the help of the application. The result of this process, a YAML serialization tree, can then be
traversed to produce a series of event calls for one-pass processing of YAML data.

3.1.3. Present
The final output process is presenting the YAML serializations as a character stream in a human-friendly manner. To
maximize human readability, YAML offsers a rich set of stylistic options which go far beyond the minimal functional
needs of simple data storage. Therefore the YAML processor is required to introduce various presentation details when
creating the stream, such as the choice of node styles, how to format content, the amount of indentation, which tag handles
to use, the node tags to leave unspecified, the set of directives to provide and possibly even what comments to add. While
some of this can be done with the help of of the application, in general this process should guided by the preferences of
the user.

3.1.4. Parse
Parsing is the inverse process of presentation, it takes a stream of characters and produces a series of events. Parsing discards
all the details introduced in the presentation process, reporting only the serialization events. Parsing can fail fue to ill-
formed input.

3.1.5. Compose
Composing takes a series of serialization events and produces a representation graph. Composing discards all the serializ-
ation details introduced in the serialization process, producing only the representation graph. Composing can fail due to
any of several reasons, detailed below.

3.1.6. Construct
The final input process is constructing native data structures from the YAML representation. Construction must be based
only on the information available in the representation, and not on additional serialization or presentation details such as
comments, directives, mapping key order, node styles, content format, indentation levels etc. Construction can fail due to
the unavailability of the required native data types.

3.2. Information Models
This section specifies the formal details of the results of the above processes. To maximize data portability between pro-
gramming languages and implementations, users of YAML should be mindful of the distinction between serialization or
presentation properties and those which are part of the YAML representation. Thus, while imposing a order on mapping
keys is necessary for flattening YAML representations to a sequential access medium, this serialization detail must not be

11

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

used to convey application level information. In a similar manner, while indentation technique and a choice of a node style
are needed for the human readability, these presentation details are neither part of the YAML serialization nor the YAML
representation. By carefully separating properties needed for serialization and presentation, YAML representations of ap-
plication information will be consistent and portable between various programming environments.

Figure 3.2. Information Models

3.2.1. Representation Graph
YAML's representation of native data is a rooted, connected, directed graph of tagged nodes. By “directed graph” we mean
a set of nodes and directed edges (“arrows”), where each edge connects one node to another (see a formal definition
[http://www.nist.gov/dads/HTML/directedGraph.html]). All the nodes must be reachable from the root node via such edges.
Note that the YAML graph may include cycles, and a node may have more than one incoming edge.

Nodes that are defined in terms of other nodes are collections and nodes that are independent of any other nodes are scalars.
YAML supports two kinds of collection nodes, sequences and mappings. Mapping nodes are somewhat tricky because
their keys are unordered and must be unique.

12

Processing YAML Information

XSL•FO
RenderX

http://www.nist.gov/dads/HTML/directedGraph.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3.3. Representation Model

3.2.1.1. Nodes

YAML nodes have content of one of three kinds: scalar, sequence, or mapping. In addition, each node has a tag which
serves to restrict the set of possible values which the node's content can have.

Scalar The content of a scalar node is an opaque datum that can be presented as a series of zero or more Unicode
characters.

Sequence The content of a sequence node is an ordered series of zero or more nodes. In particular, a sequence may
contain the same node more than once or it could even contain itself (directly or indirectly).

Mapping The content of a mapping node is an unordered set of key: value node pairs, with the restriction that each of
the keys is unique. YAML places no further restrictions on the nodes. In particular, keys may be arbitrary
nodes, the same node may be used as the value of several key: value pairs, and a mapping could even contain
itself as a key or a value (directly or indirectly).

When appropriate, it is convenient to consider sequences and mappings together, as collections. In this view, sequences
are treated as mappings with integer keys starting at zero. Having a unified collections view for sequences and mappings
is helpful both for creating practical YAML tools and APIs and for theoretical analysis.

3.2.1.2. Tags

YAML represents type information of native data structures with a simple identifier, called a tag. Global tags are are URIs
[http://www.ietf.org/rfc/rfc2396.txt] and hence globally unique across all applications. The “tag”: URI scheme

13

Processing YAML Information

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2396.txt
http://www.taguri.org
http://www.w3.org/Style/XSL
http://www.renderx.com/

[http://www.taguri.org] (mirror [http://yaml.org/spec/taguri.txt]) is recommended for all global YAML tags. In contrast,
local tags are specific to a single application. Local tags start with “!”, are not URIs and are not expected to be globally
unique. YAML provides a “TAG” directive to make tag notation less verbose; it also offers easy migration from local to
global tags. To ensure this, local tags are restricted to the URI character set and use URI character escaping.

YAML does not mandate any special relationship between different tags that begin with the same substring. Tags ending
with URI fragments (containing “#”) are no exception; tags that share the same base URI but differ in their fragment part
are considered to be different, independent tags. By convention, fragments are used to identify different “variants” of a
tag, while “/” is used to define nested tag “namespace” hierarchies. However, this is merely a convention, and each tag
may employ its own rules. For example, Perl tags may use “::” to express namespace hierarchies, Java tags may use “.”,
etc.

YAML tags are used to associate meta information with each node. In particular, each tag must specify the expected node
kind (scalar, sequence, or mapping). Scalar tags must also provide mechanism for converting formatted content to a canon-
ical form for supporting equality testing. Furthermore, a tag may provide additional information such as the set of allowed
content values for validation, a mechanism for tag resolution, or any other data that is applicable to all of the tag's nodes.

3.2.1.3. Nodes Comparison

Since YAML mappings require key uniqueness, representations must include a mechanism for testing the equality of nodes.
This is non-trivial since YAML allows various ways to format a given scalar content. For example, the integer eleven can
be written as “013” (octal) or “0xB” (hexadecimal). If both forms are used as keys in the same mapping, only a YAML
processor which recognizes integer formats would correctly flag the duplicate key as an error.

Canonical Form YAML supports the need for scalar equality by requiring that every scalar tag must specify a mechanism
to producing the canonical form of any formatted content. This form is a Unicode character string
which presents the content and can be used for equality testing. While this requirement is stronger
than a well defined equality operator, it has other uses, such as the production of digital signatures.

Equality Two nodes must have the same tag and content to be equal. Since each tag applies to exactly one kind,
this implies that the two nodes must have the same kind to be equal. Two scalars are equal only when
their tags and canonical forms are equal character-by-character. Equality of collections is defined re-
cursively. Two sequences are equal only when they have the same tag and length, and each node in
one sequence is equal to the corresponding node in the other sequence. Two mappings are equal only
when they have the same tag and an equal set of keys, and each key in this set is associated with equal
values in both mappings.

Identity Two nodes are identical only when they represent the same native data structure. Typically, this cor-
responds to a single memory address. Identity should not be confused with equality; two equal nodes
need not have the same identity. A YAML processor may treat equal scalars as if they were identical.
In contrast, the separate identity of two distinct but equal collections must be preserved.

3.2.2. Serialization Tree
To express a YAML representation using a serial API, it necessary to impose an order on mapping keys and employ alias
nodes to indicate a subsequent occurrence of a previously encountered node. The result of this process is a serialization
tree, where each node has an ordered set of children. This tree can be traversed for a serial event based API. Construction
of native structures from the serial interface should not use key order or anchors for the preservation of important data.

14

Processing YAML Information

XSL•FO
RenderX

http://yaml.org/spec/taguri.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3.4. Serialization Model

3.2.2.1. Keys Order

In the representation model, mapping keys do not have an order. To serialize a mapping, it is necessary to impose an ordering
on its keys. This order is a serialization detail and should not be used when composing the representation graph (and hence
for the preservation of important data). In every case where node order is significant, a sequence must be used. For example,
an ordered mapping can be represented as a sequence of mappings, where each mapping is a single key: value pair. YAML
provides convenient compact notation for this case.

3.2.2.2. Anchors and Aliases

In the representation graph, a node may appear in more than one collection. When serializing such data, the first occurrence
of the node is identified by an anchor and each subsequent occurrence is serialized as an alias node which refers back to
this anchor. Otherwise, anchor names are a serialization detail and are discarded once composing is completed. When
composing a representation graph from serialized events, an alias node refers to the most recent node in the serialization
having the specified anchor. Therefore, anchors need not be unique within a serialization. In addition, an anchor need not
have an alias node referring to it. It is therefore possible to provide an anchor for all nodes in serialization.

3.2.3. Presentation Stream
A YAML presentation is a stream of Unicode characters making use of of styles, formats, comments, directives and other
presentation details to present a YAML serialization in a human readable way. Although a YAML processor may provide
these details when parsing, they should not be reflected in the resulting serialization. YAML allows several serializations
to be contained in the same YAML character stream as a series of documents separated by document boundary markers.

15

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Documents appearing in the same stream are independent; that is, a node must not appear in more than one serialization
tree or representation graph.

Figure 3.5. Presentation Model

3.2.3.1. Node Styles

Each node is presented in some style, depending on its kind. The node style is a presentation detail and is not reflected in
the serialization tree or representation graph. There are two groups of styles, block and flow. Block styles use indentation
to denote nesting and scope within the document. In contrast, flow styles rely on explicit indicators to denote nesting and
scope.

YAML provides a rich set of scalar styles. Block scalar styles include the literal style and the folded style; flow scalar
styles include the plain style and two quoted styles, the single quoted style and the double quoted style. These styles offer
a range of trade-offs between expressive power and readability.

Normally, the content of block collections begins on the next line. In most cases, YAML also allows block collections to
start in-line for more compact notation when nesting block sequences and block mappings inside each other. When nesting
flow collections, a flow mapping with a single key: value pair may be specified directly inside a flow sequence, allowing
for a compact “ordered mapping” notation.

16

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3.6. Kind/Style Combinations

3.2.3.2. Scalar Formats

YAML allows scalar content to be presented in several formats. For example, the boolean “true” might also be written
as “yes”. Tags must specify a mechanism for converting any formatted scalar content to a canonical form for use in
equality testing. Like node style, the format is a presentation detail and is not reflected in the serialization tree and repres-
entation graph.

3.2.3.3. Comments

Comments are a presentation detail and must not have any effect on the serialization tree or representation graph. In partic-
ular, comments are not associated with a particular node. The usual purpose of a comment is to communicate between the
human maintainers of a file. A typical example is comments in a configuration file. Comments may not appear inside
scalars, but may be interleaved with such scalars inside collections.

3.2.3.4. Directives

Each document may be associated with a set of directives. A directive has a name and an optional sequence of parameters.
Directives are instructions to the YAML processor, and like all other presentation details are not reflected in the YAML
serialization tree or representation graph. This version of YAML defines a two directives, “YAML” and “TAG”. All other
directives are reserved for future versions of YAML.

3.3. Loading Failure Points
The process of loading native data structures from a YAML stream has several potential failure points. The character stream
may be ill-formed, aliases may be unidentified, unspecified tags may be unresolvable, tags may be unrecognized, the content
may be invalid, and a native type may be unavailable. Each of these failures results with an incomplete loading.

A partial representation need not resolve the tag of each node, and the canonical form of scalar content need not be
available. This weaker representation is useful for cases of incomplete knowledge of the types used in the document. In

17

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

contrast, a complete representation specifies the tag of each node, and provides the canonical form of scalar content, allowing
for equality testing. A complete representation is required in order to construct native data structures.

Figure 3.7. Loading Failure Points

3.3.1. Well-Formed and Identified
A well-formed character stream must match the productions specified in the next chapter. Successful loading also requires
that each alias shall refer to a previous node identified by the anchor. A YAML processor should reject ill-formed streams
and unidentified aliases. A YAML processor may recover from syntax errors, possibly by ignoring certain parts of the input,
but it must provide a mechanism for reporting such errors.

3.3.2. Resolved
It is not required that all the tags of the complete representation be explicitly specified in the character stream. During
parsing, nodes that omit the tag are given a non-specific tag: “?” for plain scalars and “!” for all other nodes. These non-
specific tags must be resolved to a specific tag (either a local tag or a global tag) for a complete representation to be composed.

Resolving the tag of a node must only depend on the following three parameters: the non-specific tag of the node, the path
leading from the root node to the node, and the content (and hence the kind) of the node. In particular, resolution must not
consider presentation details such as comments, indentation and node style. Also, resolution must not consider the content
of any other node, except for the content of the key nodes directly along the path leading from the root node to the resolved
node. In particular, resolution must not consider the content of a sibling node in a collection or the content of the value
node associated with a resolved key node.

18

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Tag resolution is specific to the application, hence a YAML processor should provide a mechanism allowing the application
to specify the tag resolution rules. It is recommended that nodes having the “!” non-specific tag should be resolved as
“tag:yaml.org,2002:seq”, “tag:yaml.org,2002:map” or “tag:yaml.org,2002:str” depending on
the node's kind. This convention allows the author of a YAML character stream to exert some measure of control over the
tag resolution process. By explicitly specifying a plain scalar has the “!” non-specific tag, the node is resolved as a string,
as if it was quoted or written in a block style. Note, however, that each application may override this behavior. For example,
an application may automatically detect the type of programming language used in source code presented as a non-plain
scalar and resolve it accordingly.

When a node has more than one occurence (using an anchor and alias nodes), tag resolution must depend only on the path
to the first occurence of the node. Typically, the path leading to a node is sufficient to determine its specific tag. In cases
where the path does not imply a single specific tag, the resolution also needs to consider the node content to select amongst
the set of possible tags. Thus, plain scalars may be matched against a set of regular expressions to provide automatic resol-
ution of integers, floats, timestamps and similar types. Similarly, the content of mapping nodes may be matched against
sets of expected keys to automatically resolve points, complex numbers and similar types.

The combined effect of these rules is to ensure that tag resolution can be performed as soon as a node is first encountered
in the stream, typically before its content is parsed. Also, tag resolution only requires refering to a relatively small number
of previously parsed nodes. Thus, tag resolution in one-pass processors is both possible and practical.

If a document contains unresolved tags, the YAML processor is unable to compose a complete representation graph. In
such a case, the YAML processor may compose an partial representation, based on each node's kind and allowing for non-
specific tags.

3.3.3. Recognized and Valid
To be valid, a node must have a tag which is recognized by the YAML processor and its content must satisfy the constraints
imposed by this tag. If a document contains a scalar node with an unrecognized tag or invalid content, only a partial rep-
resentation may be composed. In contrast, a YAML processor can always compose a complete representation for an unre-
cognized or an invalid collection, since collection equality does not depend upon knowledge of the collection's data type.
However, such a complete representation can not be used to construct a native data structure.

3.3.4. Available
In a given processing environment, there need not be an available native type corresponding to a given tag. If a node's tag
is unavailable, a YAML processor will not be able to construct a native data structure for it. In this case, a complete rep-
resentation may still be composed, and an application may wish to use this representation directly.

19

Processing YAML Information

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Syntax
Following are the BNF productions defining the syntax of YAML character streams. To make this chapter easier to follow,
production names use Hungarian-style notation:

e- A production matching no characters.

c- A production matching one or more characters starting and ending with a special (non-space) character.

b- A production matching a single line break.

nb- A production matching one or more characters starting and ending with a non-break character.

s- A production matching one or more characters starting and ending with a space character.

ns- A production matching one or more characters starting and ending with a non-space character.

X-Y- A production matching a sequence of one or more characters, starting with an X- character and ending
with a Y- character.

l- A production matching one or more lines (shorthand for s-b-).

X+, X-Y+ A production as above, with the additional property that the indentation level used is greater than the
specified n parameter.

Productions are generally introduced in a “bottom-up” order; basic productions are specified before the more complex
productions using them. Examples accompanying the productions list display sample YAML text side-by-side with equi-
valent YAML text using only flow collections and double quoted scalars. For improved readability, the equivalent YAML
text uses the “!!seq”, “!!map” and “!!str” shorthands instead of the verbatim “!<tag:yaml.org,2002:seq>”,
“!<tag:yaml.org,2002:map>” and “!<tag:yaml.org,2002:str>” forms. These types are used to resolve
all untagged nodes, except for a few examples that use the “!!int” and “!!float” types.

4.1. Characters

4.1.1. Character Set

YAML streams use the printable subset of the Unicode character set. On input, a YAML processor must accept all printable
ASCII characters, the space, tab, line break, and all Unicode characters beyond #x9F. On output, a YAML processor must
only produce these acceptable characters, and should also escape all non-printable Unicode characters. The allowed
character range explicitly excludes the surrogate block #xD800-#xDFFF, DEL #x7F, the C0 control block #x0-#x1F,
the C1 control block #x80-#x9F, #xFFFE and #xFFFF. Any such characters must be presented using escape sequences.

c-printable ::= #x9 | #xA | #xD | [#x20-#x7E] /* 8 bit */
 | #x85 | [#xA0-#xD7FF] | [#xE000-#xFFFD] /* 16 bit */
 | [#x10000-#x10FFFF] /* 32 bit */

[1]

20

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.1.2. Character Encoding

All characters mentioned in this specification are Unicode code points. Each such code point is written as one or more
octets depending on the character encoding used. Note that in UTF-16, characters above #xFFFF are written as four
octets, using a surrogate pair. A YAML processor must support the UTF-16 and UTF-8 character encodings. If a character
stream does not begin with a byte order mark (#FEFF), the character encoding shall be UTF-8. Otherwise it shall be either
UTF-8, UTF-16 LE or UTF-16 BE as indicated by the byte order mark. On output, it is recommended that a byte order
mark should only be emitted for UTF-16 character encodings. Note that the UTF-32 encoding is explicitly not supported.
For more information about the byte order mark and the Unicode character encoding schemes see the Unicode
FAQ [http://www.unicode.org/unicode/faq/utf_bom.html].

c-byte-order-mark ::= #xFEFF[2]

In the examples, byte order mark characters are displayed as “⇔”.

Example 4.1. Byte Order Mark

This stream contains no
documents, only comments.

⇔ # Comment only.

Legend:
c-byte-order-mark

Example 4.2. Invalid Byte Order Mark

ERROR:

 A BOM must not appear

 inside a document.

Invalid use of BOM

⇔ # inside a

document.

4.1.3. Indicator Characters
Indicators are characters that have special semantics used to describe the structure and content of a YAML document.

• A “-” denotes a blocks equence entry.

c-sequence-entry ::= “-”[3]

• A “?” denotes a mapping key.

c-mapping-key ::= “?”[4]

• A “:” denotes a mapping value.

c-mapping-value ::= “:”[5]

21

Syntax

XSL•FO
RenderX

http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.3. Block Structure Indicators

%YAML 1.1

!!map {
 ? !!str "sequence"
 : !!seq [
 !!str "one", !!str "two"
],
 ? !!str "mapping"
 : !!map {
 ? !!str "sky" : !!str "blue",
 ? !!str "sea" : !!str "green",
 }
}

sequence :

- one

- two

mapping :

? sky

: blue

? sea : green

Legend:
c-sequence-entry
c-mapping-key
c-mapping-value

• A “,” ends a flow collection entry.

c-collect-entry ::= “,”[6]

• A “[” starts a flow sequence.

c-sequence-start ::= “[”[7]

• A “]” ends a flow sequence.

c-sequence-end ::= “]”[8]

• A “{” starts a flow mapping.

c-mapping-start ::= “{”[9]

• A “}” ends a flow mapping.

c-mapping-end ::= “}”[10]

22

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.4. Flow Collection Indicators

%YAML 1.1

!!map {
 ? !!str "sequence"
 : !!seq [
 !!str "one", !!str "two"
],
 ? !!str "mapping"
 : !!map {
 ? !!str "sky" : !!str "blue",
 ? !!str "sea" : !!str "green",
 }
}

sequence: [one , two ,]

mapping: { sky: blue , sea: green }

Legend:
c-sequence-start c-sequence-end
c-mapping-start c-mapping-end
c-collect-entry

• A “ #” denotes a comment.

c-comment ::= “#”[11]

Example 4.5. Comment Indicator

This stream contains no
documents, only comments.

Comment only.

Legend:
c-comment

• A “&” denotes a node's anchor property.

c-anchor ::= “&”[12]

• A “*” denotes an alias node.

c-alias ::= “*”[13]

• A “!” denotes a node's tag.

c-tag ::= “!”[14]

Example 4.6. Node Property Indicators

%YAML 1.1

!!map {
 ? !!str "anchored"
 : !local &A1 "value",
 ? !!str "alias"
 : *A1,
}

anchored: ! local & anchor value

alias: * anchor

Legend:
c-anchor
c-alias
c-tag

23

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

• A “|” denotes a literal block scalar.

c-literal ::= “|”[15]

• A “>” denotes a folded block scalar.

c-folded ::= “>”[16]

Example 4.7. Block Scalar Indicators

%YAML 1.1

!!map {
 ? !!str "literal"
 : !!str "text\n",
 ? !!str "folded"
 : !!str "text\n",
}

literal: |

 text

folded: >

 text

Legend:
c-literal
c-folded

• A “'” surrounds a single quoted flow scalar.

c-single-quote ::= “'”[17]

• A “"” surrounds a double quoted flow scalar.

c-double-quote ::= “"”[18]

Example 4.8. Quoted Scalar Indicators

%YAML 1.1

!!map {
 ? !!str "double"
 : !!str "text",
 ? !!str "single"
 : !!str "text",
}

single: ' text '

double: " text "

Legend:
c-single-quote
c-double-quote

• A “%” denotes a directive line.

c-directive ::= “%”[19]

24

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.9. Directive Indicator

%YAML 1.1

!!str "text"

% YAML 1.1

--- text

Legend:
c-directive

• The “@” and “`” are reserved for future use.

c-reserved ::= “@” | “`”[20]

Example 4.10. Invalid use of Reserved Indicators

ERROR:

Reserved indicators can't

 start a plain scalar.

commercial-at: @ text

grave-accent: ` text

• Any indicator character:

c-indicator ::= “-” | “?” | “:” | “,” | “[” | “]” | “{” | “}”
 | “#” | “&” | “*” | “!” | “|” | “>” | “'” | “"”
 | “%” | “@” | “`”

[21]

4.1.4. Line Break Characters

The Unicode standard defines the following line break characters:

b-line-feed ::= #xA /*LF*/[22]
b-carriage-return ::= #xD /*CR*/[23]
b-next-line ::= #x85 /*NEL*/[24]
b-line-separator ::= #x2028 /*LS*/[25]
b-paragraph-separator ::= #x2029 /*PS*/[26]

A YAML processor must accept all the possible Unicode line break characters.

b-char ::= b-line-feed | b-carriage-return | b-next-line
 | b-line-separator | b-paragraph-separator

[27]

Line breaks can be grouped into two categories. Specific line breaks have well-defined semantics for breaking text into
lines and paragraphs, and must be preserved by the YAML processor inside scalar content.

b-specific ::= b-line-separator | b-paragraph-separator[28]

25

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Generic line breaks do not carry a meaning beyond “ending a line”. Unlike specific line breaks, there are several widely
used forms for generic line breaks.

b-generic ::= (b-carriage-return b-line-feed) /* DOS, Windows */
 | b-carriage-return /* Macintosh */
 | b-line-feed /* UNIX */
 | b-next-line /* Unicode */

[29]

Generic line breaks inside scalar content must be normalized by the YAML processor. Each such line break must be parsed
into a single line feed character. The original line break form is a presentation detail and must not be used to convey
content information.

b-as-line-feed ::= b-generic[30]
b-normalized ::= b-as-line-feed | b-specific[31]

Normalization does not apply to ignored (escaped or chomped) generic line breaks.

b-ignored-generic ::= b-generic[32]

Outside scalar content, YAML allows any line break to be used to terminate lines.

b-ignored-any ::= b-generic | b-specific[33]

On output, a YAML processor is free to present line breaks using whatever convention is most appropriate, though specific
line breaks must be preserved in scalar content. These rules are compatible with Unicode's newline guidelines
[http://www.unicode.org/unicode/reports/tr13/].

In the examples, line break characters are displayed as follows: “↓” or no glyph for a generic line break, “⇓” for a line
separator and “¶” for a paragraph separator.

Example 4.11. Line Break Characters

%YAML 1.1
--- !!str
"Generic line break (no glyph)\n\
 Generic line break (glyphed)\n\
 Line separator\u2028\
 Paragraph separator\u2029"

|
 Generic line break (no glyph)

 Generic line break (glyphed) ↓
 Line separator ⇓
 Paragraph separator ¶

Legend:
b-generic b-line-separator
b-paragraph-separator

4.1.5. Miscellaneous Characters

The YAML syntax productions make use of the following character range definitions:

• A non-break character:

nb-char ::= c-printable - b-char[34]

26

Syntax

XSL•FO
RenderX

http://www.unicode.org/unicode/reports/tr13/
http://www.w3.org/Style/XSL
http://www.renderx.com/

• An ignored space character outside scalar content. Such spaces are used for indentation and separation between tokens.
To maintain portability, tab characters must not be used in these cases, since different systems treat tabs differently.
Note that most modern editors may be configured so that pressing the tab key results in the insertion of an appropriate
number of spaces.

s-ignored-space ::= #x20 /*SP*/[35]

Example 4.12. Invalid Use of Tabs

ERROR:

 Tabs may appear inside

 comments and quoted or
 block scalar content.

 Tabs must not appear

 elsewhere, such as
 in indentation and
 separation spaces.

Tabs do's and don'ts:

comment: →
quoted: "Quoted → "

block: |
 void main() {

→ printf("Hello, world!\n");

 }

elsewhere: → # separation

→ indentation, in → plain scalar

• A white space character in quoted or block scalar content:

s-white ::= #x9 /*TAB*/ | #x20 /*SP*/[36]

In the examples, tab characters are displayed as the glyph “→”. Space characters are sometimes displayed as the glyph
“·” for clarity.

Example 4.13. Tabs and Spaces

%YAML 1.1
--- !!str
"Text·containing·\
 both·space·and·\
 tab→characters"

· · "Text · containing · · ·

· · both · space · and →
· · → tab → characters"

Legend:
#x9 (TAB) #x20 (SP)

• An ignored white space character inside scalar content:

s-ignored-white ::= s-white[37]

• A non space (and non-break) character:

ns-char ::= nb-char - s-white[38]

• A decimal digit for numbers:

ns-dec-digit ::= [#x30-#x39] /*0-9*/[39]

27

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

• A hexadecimal digit for escape sequences:

ns-hex-digit ::= ns-dec-digit | [#x41-#x46] /*A-F*/ | [#x61-#x66] /*a-f*/[40]

• An ASCII letter (alphabetic) character:

ns-ascii-letter ::= [#x41-#x5A] /*A-Z*/ | [#x61-#x7A] /*a-z*/[41]

• A word (alphanumeric) character for identifiers:

ns-word-char ::= ns-dec-digit | ns-ascii-letter | “-”[42]

• A URI character for tags, as specified in RFC2396 [http://www.ietf.org/rfc/rfc2396.txt] with the addition of the “[”
and “]” for presenting IPv6 addresses as proposed in RFC2732 [http://www.ietf.org/rfc/rfc2732.txt]. A limited form
of 8-bit escaping is available using the “%” character. By convention, URIs containing 16 and 32 bit Unicode characters
are encoded in UTF-8, and then each octet is written as a separate character.

ns-uri-char ::= ns-word-char | “%” ns-hex-digit ns-hex-digit
 | “;” | “/” | “?” | “:” | “@” | “&” | “=” | “+” | “$” | “,”
 | “_” | “.” | “!” | “~” | “*” | “'” | “(” | “)” | “[” | “]”

[43]

• The “!” character is used to indicate the end of a named tag handle; hence its use in tag shorthands is restricted.

ns-tag-char ::= ns-uri-char - “!”[44]

4.1.6. Escape Sequences

All non-printable characters must be presented as escape sequences. Each escape sequences must be parsed into the ap-
propriate Unicode character. The original escape sequence form is a presentation detail and must not be used to convey
content information. YAML escape sequences use the “\” notation common to most modern computer languages. Note
that escape sequences are only interpreted in double quoted scalars. In all other scalar styles, the “\” character has no
special meaning and non-printable characters are not available.

c-escape ::= “\”[45]

YAML escape sequences are a superset of C's escape sequences:

• Escaped ASCII null (#x0) character:

ns-esc-null ::= “\” “0”[46]

• Escaped ASCII bell (#x7) character:

ns-esc-bell ::= “\” “a”[47]

• Escaped ASCII backspace (#x8) character:

ns-esc-backspace ::= “\” “b”[48]

• Escaped ASCII horizontal tab (#x9) character:

ns-esc-horizontal-tab ::= “\” “t” | “\” #x9[49]

28

Syntax

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

• Escaped ASCII line feed (#xA) character:

ns-esc-line-feed ::= “\” “n”[50]

• Escaped ASCII vertical tab (#xB) character:

ns-esc-vertical-tab ::= “\” “v”[51]

• Escaped ASCII form feed (#xC) character:

ns-esc-form-feed ::= “\” “f”[52]

• Escaped ASCII carriage return (#xD) character:

ns-esc-carriage-return ::= “\” “r”[53]

• Escaped ASCII escape (#x1B) character:

ns-esc-escape ::= “\” “e”[54]

• Escaped ASCII space (#x20) character:

ns-esc-space ::= “\” #x20[55]

• Escaped ASCII double quote (“"”):

ns-esc-double-quote ::= “\” “"”[56]

• Escaped ASCII back slash (“\”):

ns-esc-backslash ::= “\” “\”[57]

• Escaped Unicode next line (#x85) character:

ns-esc-next-line ::= “\” “N”[58]

• Escaped Unicode non-breaking space (#xA0) character:

ns-esc-non-breaking-space ::= “\” “_”[59]

• Escaped Unicode line separator (#x2028) character:

ns-esc-line-separator ::= “\” “L”[60]

• Escaped Unicode paragraph separator (#x2029) character:

ns-esc-paragraph-separator ::= “\” “P”[61]

• Escaped 8-bit Unicode character:

ns-esc-8-bit ::= “\” “x” (ns-hex-digit x 2)[62]

29

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

• Escaped 16-bit Unicode character:

ns-esc-16-bit ::= “\” “u” (ns-hex-digit x 4)[63]

• Escaped 32-bit Unicode character:

ns-esc-32-bit ::= “\” “U” (ns-hex-digit x 8)[64]

• Any escaped character:

ns-esc-char ::= ns-esc-null | ns-esc-bell | ns-esc-backspace
 | ns-esc-horizontal-tab | ns-esc-line-feed
 | ns-esc-vertical-tab | ns-esc-form-feed
 | ns-esc-carriage-return | ns-esc-escape | ns-esc-space
 | ns-esc-double-quote | ns-esc-backslash
 | ns-esc-next-line | ns-esc-non-breaking-space
 | ns-esc-line-separator | ns-esc-paragraph-separator
 | ns-esc-8-bit | ns-esc-16-bit | ns-esc-32-bit

[65]

Example 4.14. Escaped Characters

%YAML 1.1

"Fun with \x5C
 \x22 \x07 \x08 \x1B \0C
 \x0A \x0D \x09 \x0B \x00
 \x20 \xA0 \x85 \u2028 \u2029
 A A A"

"Fun with \\

\" \a \b \e \f \↓
\n \r \t \v \0 \⇓
\ _ \N \L \P \¶

\x41 \u0041 \U00000041 "

Legend:
ns-esc-char

Example 4.15. Invalid Escaped Characters

ERROR:

- c is an invalid escaped character.

- q and - are invalid hex digits.

Bad escapes:

 "\ c

 \x q- "

4.2. Syntax Primitives

4.2.1. Production Parameters
As YAML's syntax is designed for maximal readability, it makes heavy use of the context that each syntactical entity appears
in. For notational compactness, this is expressed using parameterized BNF productions. The set of parameters and the
range of allowed values depend on the specific production. The full list of possible parameters and their values is:

Indentation: n or m Since the character stream depends upon indentation level to delineate blocks, many productions
are parameterized by it. In some cases, the notations “production(<n)”, “production(≤n)”

30

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

and “production(>n)” are used; these are shorthands for “production(m)” for some spe-
cific m where 0 ≤ m < n, 0 ≤ m ≤ n and m > n, respectively.

Context: c YAML supports two groups of contexts, distinguishing between block styles and flow styles. In
the block styles, indentation is used to delineate structure. Due to the fact that the “-” character
denoting a block sequence entry is perceived as an indentation character, some productions distin-
guish between the block-in context (inside a block sequence) and the block-out context (outside
one). In the flow styles, explicit indicators are used to delineate structure. As plain scalars have no
such indicators, they are the most context sensitive, distinguishing between being nested inside a
flow collection (flow-in context) or being outside one (flow-out context). YAML also provides a
terse and intuitive syntax for simple keys. Plain scalars in this (flow-key) context are the most re-
stricted, for readability and implementation reasons.

(Scalar) Style: s Scalar content may be presented in one of five styles: the plain, double quoted and single quoted
flow styles, and the literal and folded block styles.

(Block) Chomping: t Block scalars offer three possible mechanisms for chomping any trailing line breaks: strip, clip and
keep.

4.2.2. Indentation Spaces

In a YAML character stream, structure is often determined from indentation, where indentation is defined as a line break
character (or the start of the stream) followed by zero or more space characters. Note that indentation must not contain
any tab characters. The amount of indentation is a presentation detail used exclusively to delineate structure and is otherwise
ignored. In particular, indentation characters must never be considered part of a node's content information.

s-indent(n) ::= s-ignored-space x n[66]

Example 4.16. Indentation Spaces

%YAML 1.1

!!map {
 ? !!str "Not indented"
 : !!map {
 ? !!str "By one space"
 : !!str "By four\n spaces\n",
 ? !!str "Flow style"
 : !!seq [
 !!str "By two",
 !!str "Still by two",
 !!str "Again by two",
]
 }
}

·· # Leading comment line spaces are

··· # neither content nor indentation.

····

Not indented:

· By one space: |

···· By four

···· ·· spaces

· Flow style: [# Leading spaces

·· · By two, # in flow style

·· Also by two, # are neither

·· → Still by two # content nor

·· ··] # indentation.

Legend:
s-indent(n) Content
Neither content nor indentation

In general, a node must be indented further than its parent node. All sibling nodes must use the exact same indentation
level, however the content of each sibling node may be further indented independently. The “-”, “?” and “:” characters

31

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

used to denote block collection entries are perceived by people to be part of the indentation. Hence the indentation rules
are slightly more flexible when dealing with these indicators. First, a block sequence need not be indented relative to its
parent node, unless that node is also a block sequence. Second, compact in-line notations allow a nested collection to begin
immediately following the indicator (where the indicator is counted as part of the indentation). This provides for an intuitive
collection nesting syntax.

4.2.3. Comments

An explicit comment is is marked by a “#” indicator. Comments are a presentation detail and must have no effect on the
serialization tree (and hence the representation graph).

c-nb-comment-text ::= “#” nb-char*[67]

Comments always span to the end of the line.

c-b-comment ::= c-nb-comment-text? b-ignored-any[68]

Outside scalar content, comments may appear on a line of their own, independent of the indentation level. Note that tab
characters must not be used and that empty lines outside scalar content are taken to be (empty) comment lines.

l-comment ::= s-ignored-space* c-b-comment[69]

Example 4.17. Comment Lines

This stream contains no
documents, only comments.

Legend:
c-b-comment l-comment

··# Comment↓
···↓
↓

When a comment follows another syntax element, it must be separated from it by space characters. Like the comment itself,
such characters are not considered part of the content information.

s-b-comment ::= (s-ignored-space+ c-nb-comment-text)?
 b-ignored-any

[70]

Example 4.18. Comments Ending a Line

%YAML 1.1

!!map {
 ? !!str "key"
 : !!str "value"
}

key: ····# Comment↓
 value ↓

Legend:
c-nb-comment-text s-b-comment

In most cases, when a line may end with a comment, YAML allows it to be followed by additional comment lines.

c-l-comments ::= c-b-comment l-comment*[71]
s-l-comments ::= s-b-comment l-comment*[72]

32

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.19. Multi-Line Comments

%YAML 1.1

!!map {
 ? !!str "key"
 : !!str "value"
}

key: ····# Comment↓
········# lines↓
 value ↓
↓

Legend:
s-b-comment l-comment s-l-comments

4.2.4. Separation Spaces

Outside scalar content, YAML uses space characters for separation between tokens. Note that separation must not contain
tab characters. Seperation spaces are a presentation detail used exclusively to delineate structure and are otherwise ignored;
in particular, such characters must never be considered part of a node's content information.

s-separate(n,c) ::= c = block-out ⇒ s-separate-lines(n)
 c = block-in ⇒ s-separate-lines(n)
 c = flow-out ⇒ s-separate-lines(n)
 c = flow-in ⇒ s-separate-lines(n)
 c = flow-key ⇒ s-separate-spaces

[73]

• YAML usually allows separation spaces to include a comment ending the line and additional comment lines. Note
that the token following the separation comment lines must be properly indented, even though there is no such restriction
on the separation comment lines themselves.

s-separate-lines(n) ::= s-ignored-space+
 | (s-l-comments s-indent(n) s-ignored-space*)

[74]

• Inside simple keys, however, separation spaces are confined to the current line.

s-separate-spaces ::= s-ignored-space+[75]

33

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.20. Separation Spaces

%YAML 1.1

!!map {
 ? !!map {
 ? !!str "first"
 : !!str "Sammy",
 ? !!str "last"
 : !!str "Sosa"
 }
 : !!map {
 ? !!str "hr"
 : !!int "65",
 ? !!str "avg"
 : !!float "0.278"
 }
}

{ · first: · Sammy, · last: · Sosa · }: ↓
Statistics:

·· hr: ··# Home runs

···· 65

·· avg: ·# Average

···· 0.278

Legend:
s-separate-spaces
s-separate-lines(n)
s-indent(n)

4.2.5. Ignored Line Prefix

YAML discards the “empty” prefix of each scalar content line. This prefix always includes the indentation, and depending
on the scalar style may also include all leading white space. The ignored prefix is a presentation detail and must never be
considered part of a node's content information.

s-ignored-prefix(n,s) ::= s = plain ⇒ s-ignored-prefix-plain(n)
 s = double ⇒ s-ignored-prefix-quoted(n)
 s = single ⇒ s-ignored-prefix-quoted(n)
 s = literal ⇒ s-ignored-prefix-block(n)
 s = folded ⇒ s-ignored-prefix-block(n)

[76]

• Plain scalars must not contain any tab characters, and all leading spaces are always discarded.

s-ignored-prefix-plain(n) ::= s-indent(n) s-ignored-space*[77]

• Quoted scalars may contain tab characters. Again, all leading white space is always discarded.

s-ignored-prefix-quoted(n) ::= s-indent(n) s-ignored-white*[78]

• Block scalars rely on indentation; hence leading white space, if any, is not discarded.

s-ignored-prefix-block(n) ::= s-indent(n)[79]

34

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.21. Ignored Prefix

%YAML 1.1

!!map {
 ? !!str "plain"
 : !!str "text lines",
 ? !!str "quoted"
 : !!str "text lines",
 ? !!str "block"
 : !!str "text·→lines\n"
}

plain: text

·· lines

quoted: "text

··→ lines"

block: |

·· text

·· ·→lines

Legend:
s-ignored-prefix-plain(n)
s-ignored-prefix-quoted(n)
s-ignored-prefix-block(n)
s-indent(n)

An empty line line consists of the ignored prefix followed by a line break. When trailing block scalars, such lines can also
be interpreted as (empty) comment lines. YAML provides a chomping mechanism to resolve this ambiguity.

l-empty(n,s) ::= (s-indent(<n) | s-ignored-prefix(n,s))
 b-normalized

[80]

Example 4.22. Empty Lines

%YAML 1.1

!!seq {
 !!str "foo\nbar",
 !!str "foo\n\nbar"
}

Legend:
l-empty(n,s)
l-comment

- foo

·↓
 bar
- |-
 foo

·↓
 bar

··↓

4.2.6. Line Folding

Line folding allows long lines to be broken for readability, while retaining the original semantics of a single long line.
When folding is done, any line break ending an empty line is preserved. In addition, any specific line breaks are also
preserved, even when ending a non-empty line.

b-l-folded-specific(n,s) ::= b-specific l-empty(n,s)*[81]

Hence, folding only applies to generic line breaks that end non-empty lines. If the following line is also not empty, the
generic line break is converted to a single space (#x20).

b-l-folded-as-space ::= b-generic[82]

35

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

If the following line is empty line, the generic line break is ignored.

b-l-folded-trimmed(n,s) ::= b-ignored-generic l-empty(n,s)+[83]

Thus, a folded non-empty line may end with one of three possible folded line break forms. The original form of such a
folded line break is a presentation detail and must not be used to convey node's content information.

b-l-folded-any(n,s) ::= b-l-folded-specific(n,s)
 | b-l-folded-as-space
 | b-l-folded-trimmed(n,s)

[84]

Example 4.23. Line Folding

%YAML 1.1
--- !!str
"specific\L\
 trimmed\n\n\n\
 as space"

Legend:
b-l-folded-specific(n,s)
b-l-folded-as-space
b-l-folded-trimmed(n,s)

>-

 specific ⇓
 trimmed ↓
··↓
·↓
↓
 as ↓
 space

The above rules are common to both the folded block style and the scalar flow styles. Folding does distinguish between
the folded block style and the scalar flow styles in the following way:

Block Folding In the folded block style, folding does not apply to line breaks or empty lines that preced or follow a
text line containing leading white space. Note that such a line may consist of only such leading white
space; an empty block line is confined to (optional) indentation spaces only. Further, the final line
break and empty lines are subject to chomping, and are never folded. The combined effect of these
rules is that each “paragraph” is interpreted as a line, empty lines are used to present a line feed, the
formatting of “more indented” lines is preserved, and final line breaks may be included or excluded
from the node's content information as appropriate.

Flow Folding Folding in flow styles provides more relaxed, less powerful semantics. Flow styles typically depend
on explicit indicators to convey structure, rather than indentation. Hence, in flow styles, spaces preceding
or following the text in a line are a presentation detail and must not be considered a part of the node's
content information. Once all such spaces have been discarded, folding proceeds as described above.
In contrast with the block folded style, all line breaks are folded, without exception, and a line consisting
only of spaces is considered to be an empty line, regardless of the number of spaces. The combined
effect of these processing rules is that each “paragraph” is interpreted as a line, empty lines are used
to present a line feed, and text can be freely “more indented” without affecting the node's content in-
formation.

4.3. YAML Character Stream
A YAML character stream may contain several YAML documents, denoted by document boundary markers. Each document
presents a single independent root node and may be preceded by a series of directives.

36

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.3.1. Directives

Directives are instructions to the YAML processor. Like comments, directives are presentation details and are not reflected
in the serialization tree (and hence the representation graph). This specification defines two directives, “YAML” and “TAG”,
and reserves all other directives for future use. There is no way to define private directives. This is intentional.

l-directive ::= l-yaml-directive | l-tag-directive | l-reserved-directive[85]

Each directive is specified on a separate non-indented line starting with the “%” indicator, followed by the directive name
and a space-separated list of parameters. The semantics of these tokens depend on the specific directive. A YAML processor
should ignore unknown directives with an appropriate warning.

l-reserved-directive ::= “%” ns-directive-name
 (s-ignored-space+ ns-directive-parameter)*
 s-l-comments

[86]

ns-directive-name ::= ns-char+[87]
ns-directive-parameter ::= ns-char+[88]

Example 4.24. Reserved Directives

%YAML 1.1
--- !!str
"foo"

Legend:
l-reserved-directive
ns-directive-name
ns-directive-parameter

%FOO bar baz # Should be ignored

 # with a warning.

--- "foo"

4.3.1.1. “YAML” Directive

The “YAML” directive specifies the version of YAML the document adheres to. This specification defines version “1.1”.
A version 1.1 YAML processor should accept documents with an explicit “%YAML 1.1” directive, as well as documents
lacking a “YAML” directive. Documents with a “YAML” directive specifying a higher minor version (e.g. “%YAML 1.2”)
should be processed with an appropriate warning. Documents with a “YAML” directive specifying a higher major version
(e.g. “%YAML 2.0”) should be rejected with an appropriate error message.

l-yaml-directive ::= “%” “Y” “A” “M” “L”
 s-ignored-space+ ns-yaml-version
 s-l-comments

[89]

ns-yaml-version ::= ns-dec-digit+ “.” ns-dec-digit+[90]

Example 4.25. “YAML” directive

%YAML 1.1

!!str "foo"

Legend:
l-yaml-directive ns-yaml-version

%YAML 1.2 # Attempt parsing

 # with a warning

"foo"

37

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

It is an error to specify more than one “YAML” directive for the same document, even if both occurences give the same
version number.

Example 4.26. Invalid Repeated YAML directive

ERROR:

The YAML directive must only be

given at most once per document.

%YAML 1.1

% YAML 1.1

foo

4.3.1.2. “TAG” Directive

The “TAG” directive establishes a shorthand notation for specifying node tags. Each “TAG” directive associates a handle
with a prefix, allowing for compact and readable tag notation.

l-tag-directive ::= “%” “T” “A” “G”
 s-ignored-space+ c-tag-handle
 s-ignored-space+ ns-tag-prefix
 s-l-comments

[91]

Example 4.27. “TAG” directive

%YAML 1.1

!!str "foo"

Legend:
l-tag-directive
c-tag-handle ns-tag-prefix

%TAG !yaml! tag:yaml.org,2002:↓

!yaml!str "foo"

It is an error to specify more than one “TAG” directive for the same handle in the same document, even if both occurences
give the same prefix.

Example 4.28. Invalid Repeated TAG directive

ERROR:
The TAG directive must only
be given at most once per

handle in the same document.

%TAG ! !foo

%TAG ! !foo

bar

4.3.1.2.1. Tag Prefixes

There are two tag prefix variants:

ns-tag-prefix ::= ns-local-tag-prefix | ns-global-tag-prefix[92]

38

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Local Tags If the prefix begins with a “!” character, shorthands using the handle are expanded to a local tag beginning
with “!”. Note that such a tag is intentionally not a valid URI, since its semantics are specific to the
application. In particular, two documents in the same stream may assign different semantics to the same
local tag.

ns-local-tag-prefix ::= “!” ns-uri-char*[93]

Global Tags If the prefix begins with a character other than “!”, it must to be a valid URI prefix, and should contain
at least the scheme and the authority. Shorthands using the associated handle are expanded to globally
unique URI tags, and their semantics is consistent across applications. In particular, two documents in
different streams must assign the same semantics to the same global tag.

ns-global-tag-prefix ::= ns-tag-char ns-uri-char*[94]

Example 4.29. Tag Prefixes

%YAML 1.1

!!seq [
 !<!foobar> "bar",
 !<tag:yaml.org,2002:str> "string"
]

%TAG ! !foo

%TAG !yaml! tag:yaml.org,2002:

- !bar "baz"
- !yaml!str "string"

Legend:
ns-local-tag-prefix ns-global-tag-prefix

4.3.1.2.2. Tag Handles

The tag handle exactly matches the prefix of the affected shorthand. There are three tag handle variants:

c-tag-handle ::= c-primary-tag-handle
 | ns-secondary-tag-handle
 | c-named-tag-handle

[95]

Primary Handle The primary tag handle is a single “!” character. This allows using the most compact possible notation
for a single “primary” name space. By default, the prefix associated with this handle is “!”. Thus,
by default, shorthands using this handle are interpreted as local tags. It is possible to override this
behavior by providing an explicit “TAG” directive associating a different prefix for this handle. This
provides smooth migration from using local tags to using global tags by a simple addition of a single
“TAG” directive.

c-primary-tag-handle ::= “!”[96]

39

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.30. Migrating from Local to Global Tags

%YAML 1.1

!<!foo> "bar"

%YAML 1.1

!<tag:ben-kiki.org,2000:app/foo> "bar"

Private application:
!foo "bar"

Migrated to global:
%TAG ! tag:ben-kiki.org,2000:app/

!foo "bar"

Secondary Handle The secondary tag handle is written as “!!”. This allows using a compact notation for a single
“secondary” name space. By default, the prefix associated with this handle is
“tag:yaml.org,2002:” used by the YAML tag repository [http://yaml.org/type/index.html]
providing recommended tags for increasing the portability of YAML documents between different
applications. It is possible to override this behavior by providing an explicit “TAG” directive associ-
ating a different prefix for this handle.

ns-secondary-tag-handle ::= “!” “!”[97]

Named Handles A named tag handle surrounds the non-empty name with “!” characters. A handle name must only
be used in a shorthand if an explicit “TAG” directive has associated some prefix with it. The name of
the handle is a presentation detail and is not part of the node's content information. In particular, the
YAML processor need not preserve the handle name once parsing is completed.

c-named-tag-handle ::= “!” ns-word-char+ “!”[98]

Example 4.31. Tag Handles

%YAML 1.1

!!seq [
 !<!foo> "bar",
 !<tag:yaml.org,2002:str> "string"
 !<tag:ben-kiki.org,2000:type> "baz"
]

Legend:
c-primary-tag-handle
c-secondary-tag-handle
c-named-tag-handle

Explicitly specify default settings:

%TAG ! !

%TAG !! tag:yaml.org,2002:

Named handles have no default:

%TAG !o! tag:ben-kiki.org,2000:

- !foo "bar"
- !!str "string"
- !o!type "baz"

4.3.2. Document Boundary Markers

YAML streams use document boundary markers to allow more than one document to be contained in the same stream.
Such markers are a presentation detail and are used exclusively to convey structure. A line beginning with “---” may
be used to explicitly denote the beginning of a new YAML document.

c-document-start ::= “-” “-” “-”[99]

40

Syntax

XSL•FO
RenderX

http://yaml.org/type/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

When YAML is used as the format of a communication channel, it is useful to be able to indicate the end of a document
without closing the stream, independent of starting the next document. Lacking such a marker, the YAML processor
reading the stream would be forced to wait for the header of the next document (that may be long time in coming) in order
to detect the end of the previous one. To support this scenario, a YAML document may be terminated by an explicit end
line denoted by “...”, followed by optional comments. To ease the task of concatenating YAML streams, the end
marker may be repeated.

c-document-end ::= “.” “.” “.”[100]
l-document-suffix ::= (c-document-end s-l-comments)+[101]

Example 4.32. Document Boundary Markers

%YAML 1.1

!!str "foo"
%YAML 1.1

!!str "bar"
%YAML 1.1

!!str "baz"

Legend:
c-document-start l-document-suffix

--- ↓
foo

...

Repeated end marker.

...↓
--- ↓
bar
No end marker.

--- ↓
baz

...↓

4.3.3. Documents
A YAML document is a single native data structure presented as a single root node. Presentation details such as directives,
comments, indentation and styles are not considered part of the content information of the document.

Explicit Documents An explicit document begins with a document start marker followed by the presentation of the root
node. The node may begin in the same line as the document start marker. If the explicit document's
node is completely empty, it is assumed to be an empty plain scalar with no specified properties.
Optional document end marker(s) may follow the document.

l-explicit-document ::= c-document-start
 (s-l+block-node(-1,block-in) | s-l-empty-block)
 l-document-suffix?

[102]

Implicit Documents An implicit document does not begin with a document start marker. In this case, the root node must
not be presented as a completely empty node. Again, optional document end marker(s) may follow
the document.

l-implicit-document ::= s-ignored-space* ns-l+block-node(-1,block-in)
 l-document-suffix?

[103]

In general, the document's node is indented as if it has a parent indented at -1 spaces. Since a node must be more indented
that its parent node, this allows the document's node to be indented at zero or more spaces. Note that flow scalar continuation
lines must be indented by at least one space, even if their first line is not indented.

41

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.33. Documents

%YAML 1.1

!!str "Root flow scalar"
%YAML 1.1

!!str "Root block scalar"
%YAML 1.1

!!map {
 ? !!str "foo"
 : !!str "bar"
}

!!str ""

"Root flow

 scalar"

--- !!str >

 Root block

 scalar

Root collection:

foo : bar

... # Is optional.

Explicit document may be empty.

Legend:
l-implicit-document l-explicit-document

4.3.4. Complete Stream

A sequence of bytes is a YAML character stream if, taken as a whole, it complies with the l-yaml-stream production.
The stream begins with a prefix containing an optional byte order mark denoting its character encoding, followed by op-
tional comments. Note that the stream may contain no documents, even if it contains a non-empty prefix. In particular, a
stream containing no chareacters is valid and contains no documents.

l-yaml-stream ::= c-byte-order-mark? l-comment*
 (l-first-document l-next-document*)?

[104]

Example 4.34. Empty Stream

This stream contains no
documents, only comments.

⇔# A stream may contain

no documents.

Legend:
l-yaml-stream

The first document may be implicit (omit the document start marker). In such a case it must not specify any directives
and will be parsed using the default settings. If the document is explicit (begins with an document start marker), it may
specify directives to control its parsing.

l-first-document ::= (l-implicit-document
 | (l-directive* l-explicit-document))

[105]

42

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.35. First Document

%YAML 1.1

!!str "Text content\n"

%YAML 1.1

!!map {
 ? !!str "foo"
 : !!str "bar"
}

Implicit document. Root
collection (mapping) node.

foo : bar

Explicit document. Root
scalar (literal) node.

--- |

 Text content

Legend:
l-first-document

To ease the task of concatenating character streams, following documents may begin with a byte order mark and comments,
though the same character encoding must be used through the stream. Each following document must be explicit (begin
with a document start marker). If the document specifies no directives, it is parsed using the same settings as the previous
document. If the document does specify any directives, all directives of previous documents, if any, are ignored.

l-next-document ::= c-byte-order-mark? l-comment*
 l-directive* l-explicit-document

[106]

Example 4.36. Next Documents

%YAML 1.1

!!str "First document"

!<!foo> "No directives"

!<!foobar> "With directives"

!<!baz> "Reset settings"

Legend:
l-next-document

! "First document"

!foo "No directives"

%TAG ! !foo

!bar "With directives"

%YAML 1.1

!baz "Reset settings"

4.4. Nodes
Each presentation node may have two optional properties, anchor and tag, in addition to its content. Node properties may
be specified in any order before the node's content, and either or both may be omitted from the character stream.

c-ns-properties(n,c) ::= (c-ns-tag-property
 (s-separate(n,c) c-ns-anchor-property)?)
 | (c-ns-anchor-property
 (s-separate(n,c) c-ns-tag-property)?)

[107]

43

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.37. Node Properties

%YAML 1.1

!!map {
 ? &A1 !!str "foo"
 : !!str "bar",
 ? !!str &A2 "baz"
 : *a1
}

!!str

&a1 ↓
 "foo" : !!str bar

&a2 baz : *a1

Legend:
c-ns-anchor-property c-ns-tag-property
c-ns-properties(n,c)

4.4.1. Node Anchors

The anchor property marks a node for future reference. An anchor is denoted by the “&” indicator. An alias node can
then be used to indicate additional inclusions of the anchored node by specifying its anchor. An anchored node need not
be referenced by any alias node; in particular, it is valid for all nodes to be anchored.

c-ns-anchor-property ::= “&” ns-anchor-name[108]

Note that as a serialization detail, the anchor name is preserved in the serialization tree. However, it is not reflected in the
representation graph and must not be used to convey content information. In particular, the YAML processor need not
preserve the anchor name once the representation is composed.

ns-anchor-name ::= ns-char+[109]

Example 4.38. Node Anchors

%YAML 1.1

!!map {
 ? !!str "First occurence"
 : &A !!str "Value",
 ? !!str "Second occurence"
 : *A
}

First occurence: &anchor Value

Second occurence: * anchor

Legend:
c-ns-anchor-property
ns-anchor-name

4.4.2. Node Tags

The tag property identifies the type of the native data structure presented by the node. A tag is denoted by the “!” indicator.
In contrast with anchors, tags are an inherent part of the representation graph.

c-ns-tag-property ::= c-verbatim-tag | c-ns-shorthand-tag
 | c-ns-non-specific-tag

[110]

44

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Verbatim Tags A tag may be written verbatim by surrounding it with the “<” and “>” characters. In this case, the
YAML processor must deliver the verbatim tag as-is to the application. In particular, verbatim tags
are not subject to tag resolution. A verbatim tag must either begin with a “!” (a local tag) or be a
valid URI (a global tag).

c-verbatim-tag ::= “!” “<” ns-uri-char+ “>”[111]

Example 4.39. Verbatim Tags

%YAML 1.1

!!map {
 ? !<tag:yaml.org,2002:str> "foo"
 : !<!bar> "baz"
}

!<tag:yaml.org,2002:str> foo :

!<!bar> baz

Legend:
c-verbatim-tag

Example 4.40. Invalid Verbatim Tags

ERROR:
- Verbatim tags aren't resolved,

 so ! is invalid.

- The $:? tag is neither a global

 URI tag nor a local tag starting
 with !.

- !< ! > foo

- !< $:? > bar

Tag Shorthands A tag shorthand consists of a valid tag handle followed by a non-empty suffix. The tag handle must
be associated with a prefix, either by default or by using a “TAG” directive. The resulting parsed tag
is the concatenation of the prefix and the suffix, and must either begin with “!” (a local tag) or be a
valid URI (a global tag). When the primary tag handle is used, the suffix must not contain any “!”
character, as this would cause the tag shorthand to be interpreted as having a named tag handle. If
the “!” character exists in the suffix of a tag using the primary tag handle, it must be escaped as
“%21”, and the parser should expand this particular escape sequence before passing the tag to the
application. This behavior is consistent with the URI character quoting rules (specifically, section
2.3 of RFC2396 [http://www.ietf.org/rfc/rfc2396.txt]), and ensures the choice of tag handle remains
a presentation detail and is not reflected in the serialization tree (and hence the representation graph).
In particular, the tag handle may be discarded once parsing is completed.

c-ns-shorthand-tag ::= (c-primary-tag-handle ns-tag-char+)
 | (ns-secondary-tag-handle ns-uri-char+)
 | (c-named-tag-handle ns-uri-char+)

[112]

45

Syntax

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.41. Tag Shorthands

%YAML 1.1

!!seq [
 !<!local> "foo",
 !<tag:yaml.org,2002:str> "bar",
 !<tag:ben-kiki.org,2000:type> "baz",
]

%TAG !o! tag:ben-kiki.org,2000:

- !local foo

- !!str bar

- !o!type baz

Legend:
c-ns-shorthand-tag

Example 4.42. Invalid Shorthand Tags

ERROR:

- The !$a! looks like a handle.

- The !o! handle has no suffix.

- The !h! handle wasn't declared.

%TAG !o! tag:ben-kiki.org,2000:

- !$a! b foo

- !o! bar

- !h! type baz

Non-Specific Tags If a node has no tag property, it is assigned a non-specific tag: “?” for plain scalars and “!” for all
other nodes. Non-specific tags must be resolved to a specific tag for a complete representation graph
to be composed. It is also possible for the tag property to explicitly specify the node has the “!” non-
specific tag. This is only useful for plain scalars, causing them to be resolved as if they were non-plain
(hence, by the common tag resolution convention, as “tag:yaml.org,2002:str”). There is no
way to explicitly set the tag to the “?” non-specific tag. This is intentional.

c-ns-non-specific-tag ::= “!”[113]

Example 4.43. Non-Specific Tags

%YAML 1.1

!!seq [
 !<tag:yaml.org,2002:str> "12",
 !<tag:yaml.org,2002:int> "12",
 !<tag:yaml.org,2002:str> "12",
]

Assuming conventional resolution:
- "12"
- 12

- ! 12

Legend:
c-ns-non-specific-tag

46

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.3. Node Content

Node content may be presented in either a flow style or a block style. Block content always extends to the end of a line
and uses indentation to denote structure, while flow content starts and ends at some non-space character within a line and
uses indicators to denote structure. Each collection kind can be presented in a single flow collection style or a single block
collection style. However, each collection kind also provides compact in-line forms for common cases. Scalar content
may be presented in the plain style or one of the two quoted styles (the single quoted style and the double quoted style).
Regardless of style, scalar content must always be indented by at least one space. In contrast, collection content need not
be indented (note that the indentation of the first flow scalar line is determined by the block collection it is nested in, if
any).

ns-flow-scalar(n,c) ::= c-plain(max(n,1),c)
 | c-single-quoted(max(n,1),c)
 | c-double-quoted(max(n,1),c)

[114]

c-flow-collection(n,c) ::= c-flow-sequence(n,c) | c-flow-mapping(n,c)[115]
ns-flow-content(n,c) ::= ns-flow-scalar(n,c) | c-flow-collection(n,c)[116]
c-l+block-scalar(n) ::= c-l+folded(max(n,0)) | c-l+literal(max(n,0))[117]
c-l-block-collection(n,c) ::= c-l-block-sequence(n,c) | c-l-block-mapping(n)[118]
c-l+block-content(n,c) ::= c-l+block-scalar(n)
 | c-l-block-collection(>n,c)

[119]

Example 4.44. Mandatory Scalar Indentation

%YAML 1.1

!!map {
 ? !!str "foo"
 : !!str "bar baz"
}
%YAML 1.1

!!str "foo bar"
%YAML 1.1

!!str "foo bar"
%YAML 1.1

!!str "foo bar\n"

foo:

· "bar

· baz"

"foo

· bar"

foo

· bar

--- |

· foo

...

Legend:
Normal "more-indented" indentation
Mandatory for "non-indented" scalar

47

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.45. Flow Content

%YAML 1.1
--- !!map {
 ? !!str "scalars" : !!map {
 ? !!str "plain"
 : !!str "some text",
 ? !!str "quoted"
 : !!map {
 ? !!str "single"
 : !!str "some text",
 ? !!str "double"
 : !!str "some text"
 } },
 ? !!str "collections": : !!map {
 ? !!str "sequence" : !!seq [
 ? !!str "entry",
 : !!map {
 ? !!str "key" : !!str "value"
 }],
 ? !!str "mapping": : !!map {
 ? !!str "key" : !!str "value"
} } }

scalars:

 plain: !!str some text ↓
 quoted:

 single: 'some text' ↓
 double: "some text" ↓
collections:

 sequence: !!seq [!str entry,

Mapping entry:↓
 key: value] ↓
 mapping: { key: value } ↓

Legend:
ns-flow-scalar
c-flow-collection
not content

Example 4.46. Block Content

%YAML 1.1

!!map {
 ? !!str "block styles" : !!map {
 ? !!str "scalars" : !!map {
 ? !!str "literal"
 : !!str "#!!/usr/bin/perl\n\
 print \"Hello,
 world!!\\n\";\n",
 ? !!str "folded"
 : !!str "This sentence
 is false.\n"
 },
 ? !!str "collections" : !!map {
 ? !!str "sequence" : !!seq [
 !!str "entry",
 !!map {
 ? !!str "key" : !!str "value"
 }
],
 ? !!str "mapping" : !!map {
 ? !!str "key" : !!str "value"
} } } }

block styles:
 scalars:

 literal: !!str |

 #!/usr/bin/perl

 print "Hello, world!\n";↓
 folded: >

 This sentence

 is false.↓
 collections: !!seq

 sequence: !!seq # Entry:↓
 - entry

Mapping entry:↓
 - key: value↓
 mapping: ↓
 key: value↓

Legend:
c-l+block-scalar
c-l-block-collection
not content

48

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.4. Alias Nodes

Subsequent occurrences of a previously serialized node are presented as alias nodes, denoted by the “*” indicator. The
first occurrence of the node must be marked by an anchor to allow subsequent occurrences to be presented as alias nodes.
An alias node refers to the most recent preceding node having the same anchor. It is an error to have an alias node use an
anchor that does not previously occur in the document. It is not an error to specify an anchor that is not used by any alias
node. Note that an alias node must not specify any properties or content, as these were already specified at the first occur-
rence of the node.

c-ns-alias-node ::= “*” ns-anchor-name[120]

Example 4.47. Alias Nodes

%YAML 1.1

!!map {
 ? !!str "First occurence"
 : &A !!str "Value",
 ? !!str "Second occurence"
 : *A
}

First occurence: & anchor Value

Second occurence: *anchor

Legend:
c-ns-alias-node
ns-anchor-name

4.4.5. Complete Nodes

4.4.5.1. Flow Nodes

A complete flow node is either an alias node presenting a second occurence of a previous node, or consists of the node
properties followed by the node's content. A node with empty content is considered to be an empty plain scalar.

ns-flow-node(n,c) ::= c-ns-alias-node | ns-flow-content(n,c)
 | (c-ns-properties(n,c)
 (/* empty plain scalar content */
 | (s-separate(n,c) ns-flow-content(n,c))))

[121]

Example 4.48. Flow Nodes in Flow Context

%YAML 1.1

!!seq [
 !!str "Without properties",
 &A !!str "Anchored",
 !!str "Tagged",
 *A,
 !!str "",
]

[

Without properties ,

&anchor "Anchored" ,

!!str 'Tagged' ,

*anchor , # Alias node

!!str , # Empty plain scalar

]

Legend:
ns-flow-node(n,c) ns-flow-content(n,c)

49

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Since both the node's properties and node content are optional, this allows for a completely empty node. Completely empty
nodes are only valid when following some explicit indicator for their existance.

e-empty-flow ::= /* empty plain scalar node */[122]

In the examples, completely empty nodes are displayed as the glyph “° ”. Note that this glyph corresponds to a position
in the characters stream rather than to an actual character.

Example 4.49. Completely Empty Flow Nodes

%YAML 1.1

!!map {
 ? !!str "foo"
 : !!str "",
 ? !!str "",
 : !!str "bar",
 ? !!str "",
 : !!str ""
}

{

 ? foo : ° ,

 ? ° : bar,

 ? ° : ° ,

]

Legend:
e-empty-flow

4.4.5.2. Block Nodes

A complete block node consists of the node's properties followed by the node's content. In addition, a block node may
consist of a (possibly completely empty) flow node followed by a line break (with optional comments).

ns-l+flow-in-block(n,c) ::= ns-flow-node(n+1,flow-out) s-l-comments[123]
ns-l+block-in-block(n,c) ::= (c-ns-properties(n+1,c) s-separate(n+1,c))?
 c-l+block-content(n,c)

[124]

ns-l+block-node(n,c) ::= ns-l+block-in-block(n,c)
 | ns-l+flow-in-block(n,c)

[125]

s-l+block-node(n,c) ::= s-separate(n+1,c) ns-l+block-node(n,c)[126]

Example 4.50. Block Nodes

%YAML 1.1

!!seq [
 !!str "",
 !!map {
 ? !!str "foo"
 : !!str "",
 ? !!str "",
 : !!str "bar",
 ? !!str "",
 : !!str ""
 }
]

- ·"flow in block"↓
- ·>

 Block scalar↓
- ·!!map # Block collection

 foo : bar↓

Legend:
ns-l+flow-in-block(n,c)
ns-l+block-in-block(n,c)
s-l+block-node(n,c)

50

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

A block node always spans to the end of the line, even when completely empty. Completely empty block nodes may only
appear when there is some explicit indicator for their existance.

s-l-empty-block ::= e-empty-flow s-l-comments[127]

Example 4.51. Completely Empty Block Nodes

%YAML 1.1

!!seq [
 !!str "",
 !!map {
 ? !!str "foo"
 : !!str "",
 ? !!str "",
 : !!str "bar",
 ? !!str "",
 : !!str ""
 }
]

seq:

- ° # Empty plain scalar↓
- ? foo

 : ° ↓
 ? ° ↓
 : bar,

 ? ° ↓
 : ° ↓

Legend:
s-l-empty-block

4.5. Scalar Styles
YAML provides a rich set of scalar styles to choose from, depending upon the readability requirements: three scalar flow
styles (the plain style and the two quoted styles: single quoted and double quoted), and two scalar block styles (the literal
style and the folded style). Comments may precede or follow scalar content, but must not appear inside it. Scalar node style
is a presentation detail and must not be used to convey content information, with the exception that untagged plain scalars
are resolved in a distinct way.

4.5.1. Flow Scalar Styles
All flow scalar styles may span multiple lines, except when used in simple keys. Flow scalars are subject to (flow) line
folding. This allows flow scalar content to be broken anywhere a single space character (#x20) separates non-space
characters, at the cost of requiring an empty line to present each line feed character.

4.5.1.1. Double Quoted

The double quoted style is specified by surrounding “"” indicators. This is the only scalar style capable of expressing
arbitrary strings, by using “\” escape sequences. Therefore, the “\” and “"” characters must also be escaped when present
in double quoted content. Note it is an error for double quoted content to contain invalid escape sequences.

nb-double-char ::= (nb-char - “\” - “"”) | ns-esc-char[128]
ns-double-char ::= nb-double-char - s-white[129]

51

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Double quoted scalars are restricted to a single line when contained inside a simple key.

c-double-quoted(n,c) ::= “"” nb-double-text(n,c) “"”[130]
nb-double-text(n,c) ::= c = flow-out ⇒ nb-double-any(n)
 c = flow-in ⇒ nb-double-any(n)
 c = flow-key ⇒ nb-double-single

[131]

nb-double-any(n) ::= nb-double-single | nb-double-multi(n)[132]

Example 4.52. Double Quoted Scalars

%YAML 1.1

!!map {
 ? !!str "simple key"
 : !!map {
 ? !!str "also simple"
 : !!str "value",
 ? !!str "not a simple key"
 : !!str "any value"
 }
}

"simple key" : {

"also simple" : value,

 ? "not a

 simple key" : "any

 value"

}

Legend:
nb-double-single nb-double-multi(n)
c-double-quoted(n,c)

A single line double quoted scalar is a sequence of (possibly escaped) non-break Unicode characters. All characters are
considered content, including any leading or trailing white space characters.

nb-double-single ::= nb-double-char*[133]

In a multi-line double quoted scalar, line breaks are subject to flow line folding, and any trailing white space is excluded
from the content. However, an escaped line break (using a “\”) is excluded from the content, while white space preceding
it is preserved. This allows double quoted content to be broken at arbitrary positions.

s-l-double-folded(n) ::= s-ignored-white* b-l-folded-any(n,double)[134]
s-l-double-escaped(n) ::= s-white* “\” b-ignored-any
 l-empty(n,double)*

[135]

s-l-double-break(n) ::= s-l-double-folded(n) | s-l-double-escaped(n)[136]

Example 4.53. Double Quoted Line Breaks

%YAML 1.1

!!str "as space \
 trimmed\n\
 specific\L\n\
 escaped\t\
 none"

Legend:
s-l-double-folded(n) s-l-double-escaped(n)
s-ignored-white s-white (Content)

 "as space →↓
 trimmed ·↓
↓
 specific ⇓
↓
 escaped →\¶

·↓
 none"

52

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

A multi-line double quoted scalar consists of a (possibly empty) first line, any number of inner lines, and a final (possibly
empty) last line.

nb-double-multi(n) ::= nb-l-double-first(n)
 l-double-inner(n)*
 s-nb-double-last(n)

[137]

Leading white space in the first line is considered content only if followed by a non-space character or an escaped (ignored)
line break.

nb-l-double-first(n) ::= (nb-double-char* ns-double-char)?
 s-l-double-break(n)

[138]

Example 4.54. First Double Quoted Line

%YAML 1.1

!!seq [
 !!str " last",
 !!str " last",
 !!str " \tfirst last",
]

- " ↓
 last"

- " ·→↓
 last"

- " ·→first↓
 last"

Legend:
nb-l-double-first(n) s-ignored-white

All leading and trailing white space of an inner lines are excluded from the content. Note that such while prefix white
space may contain tab characters, line indentation is restricted to space characters only. It is possible to force considering
leading white space as content by escaping the first character (“\·”, “\→” or “\t”).

l-double-inner(n) ::= s-ignored-prefix(n,double) ns-double-char
 (nb-double-char* ns-double-char)?
 s-l-double-break(n)

[139]

Example 4.55. Inner Double Quoted Lines

%YAML 1.1

!!str "first \
 inner 1 \
 inner 2 \
 last"

 "first

·→inner 1→↓
·\·inner 2·\↓
 last"

Legend:
l-double-inner(n)
s-ignored-prefix(n,s) s-l-double-break(n)

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

s-nb-double-last(n) ::= s-ignored-prefix(n,double)
 (ns-double-char nb-double-char*)?

[140]

53

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.56. Last Double Quoted Line

%YAML 1.1

!!seq [
 !!str "first ",
 !!str "first\nlast",
 !!str "first inner \tlast",
]

Legend:
s-nb-double-last(n)
s-ignored-prefix(n,s)

- "first

··→"

- "first

··→last"

- "first
 inner

·\·→last"

4.5.1.2. Single Quoted

The single quoted style is specified by surrounding “'” indicators. Therefore, within a single quoted scalar such characters
need to be repeated. This is the only form of escaping performed in single quoted scalars. In particular, the “\” and “"”
characters may be freely used. This restricts single quoted scalars to printable characters.

c-quoted-quote ::= “'” “'”[141]
nb-single-char ::= (nb-char - “"”) | c-quoted-quote[142]
ns-single-char ::= nb-single-char - s-white[143]

Example 4.57. Single Quoted Quotes

%YAML 1.1

!!str "here's to \"quotes\""

 'here '' s to "quotes"'

Legend:
single-quoted-quote

Single quoted scalars are restricted to a single line when contained inside a simple key.

c-single-quoted(n,c) ::= “'” nb-single-text(n,c) “'”[144]
nb-single-text(n,c) ::= c = flow-out ⇒ nb-single-any(n)
 c = flow-in ⇒ nb-single-any(n)
 c = flow-key ⇒ nb-single-single(n)

[145]

nb-single-any(n) ::= nb-single-single(n) | nb-single-multi(n)[146]

54

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.58. Single Quoted Scalars

%YAML 1.1

!!map {
 ? !!str "simple key"
 : !!map {
 ? !!str "also simple"
 : !!str "value",
 ? !!str "not a simple key"
 : !!str "any value"
 }
}

'simple key' : {

'also simple' : value,

 ? 'not a

 simple key' : 'any

 value'

}

Legend:
nb-single-single nb-single-multi(n)
c-single-quoted(n,c)

A single line single quoted scalar is a sequence of non-break printable characters. All characters are considered content,
including any leading or trailing white space characters.

nb-single-single(n) ::= nb-single-char*[147]

In a multi-line single quoted scalar, line breaks are subject to (flow) line folding, and any trailing white space is excluded
from the content.

s-l-single-break(n) ::= s-ignored-white* b-l-folded-any(n,single)[148]

Example 4.59. Single Quoted Line Breaks

%YAML 1.1

!!str "as space \
 trimmed\n\
 specific\L\n\
 none"

Legend:
s-l-single-break(n)
s-ignored-white s-white (Content)

 'as space →↓
 trimmed ·↓
↓
 specific ⇓
↓
 none'

A multi-line single quoted scalar consists of a (possibly empty) first line, any number of inner lines, and a final (possibly
empty) last line.

nb-single-multi(n) ::= nb-l-single-first(n)
 l-single-inner(n)*
 s-nb-single-last(n)

[149]

Leading white space in the first line is considered content only if followed by a non-space character.

nb-l-single-first(n) ::= (nb-single-char* ns-single-char)?
 s-l-single-break(n)

[150]

55

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.60. First Single Quoted Line

%YAML 1.1

!!seq [
 !!str " last",
 !!str " last",
 !!str " \tfirst last",
]

- ' ↓
 last'

- ' ·→↓
 last'

- ' ·→first↓
 last'

Legend:
nb-l-single-first(n) s-ignored-white

All leading and trailing white space of inner lines is excludced from the content. Note that while prefix white space may
contain tab characters, line indentation is restricted to space characters only. Unlike double quoted scalars, it is impossible
to force the inclusion of the leading or trailing spaces in the content. Therefore, single quoted scalars lines can only be
broken where a single space character separates two non-space characters.

l-single-inner(n) ::= s-ignored-prefix(n,single) ns-single-char
 (nb-single-char* ns-single-char)?
 s-l-single-break(n)

[151]

Example 4.61. Inner Single Quoted Lines

%YAML 1.1

!!str "first \
 inner \
 last"

 'first

·→inner→↓
 last'

Legend:
l-single-inner(n)
s-ignored-prefix(n,s) s-l-single-break(n)

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

s-nb-single-last(n) ::= s-ignored-prefix(n,single)
 (ns-single-char nb-single-char*)?

[152]

Example 4.62. Last Single Quoted Lines

%YAML 1.1

!!seq [
 !!str "first ",
 !!str "first\nlast",
]

- 'first

··→'

- 'first

··→last'

Legend:
s-nb-double-last(n) s-ignored-prefix(n,s)

56

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.5.1.3. Plain

The plain style uses no identifying indicators, and is therefore the most most limited and most context sensitive scalar
style. Plain scalars can never contain any tab characters. They also must not contain the “: ” and “ #” character sequences
as these combinations cause ambiguity with key: value pairs and comments. Inside flow collections, plain scalars are
further restricted to avoid containing the “[”, “]”, “{”, “}” and “,” characters as these would cause ambiguity with the
flow collection structure (hence the need for the flow-in context and the flow-out context).

nb-plain-char(c) ::= c = flow-out ⇒ nb-plain-char-out
 c = flow-in ⇒ nb-plain-char-in
 c = flow-key ⇒ nb-plain-char-in

[153]

nb-plain-char-out ::= (nb-char - “:” - “#” - #x9 /*TAB*/)
 | (ns-plain-char(flow-out) “#”)
 | (“:” ns-plain-char(flow-out))

[154]

nb-plain-char-in ::= nb-plain-char-out - “,” - “[” - “]” - “{” - “}”[155]
ns-plain-char(c) ::= nb-plain-char(c) - #x20 /*SP*/[156]

The first plain character is further restricted to avoid most indicators as these would cause ambiguity with various YAML
structures. However, the first character may be “-”, “?” or “:” provided it is followed by a non-space character.

ns-plain-first-char(c) ::= (ns-plain-char(c) - c-indicator)
 | ((“-” | “?” | “:”) ns-plain-char(c))

[157]

Example 4.63. Plain Characters

%YAML 1.1

!!seq [
 !!str "::std::vector",
 !!str "Up, up and away!",
 !!int "-123",
 !!seq [
 !!str "::std::vector",
 !!str "Up, up and away!",
 !!int "-123",
]
]

Outside flow collection:

- :: std::vector

- U p , up and away!

- -1 23

Inside flow collection:

- [:: std::vector,

 "Up , up and away!",

-1 23]

Legend:
ns-plain-first-char(c)
ns-plain-char(c) Not ns-plain-char(c)

Plain scalars are restricted to a single line when contained inside a simple key.

ns-plain(n,c) ::= c = flow-out ⇒ ns-plain-multi(n,c)?
 c = flow-in ⇒ ns-plain-multi(n,c)?
 c = flow-key ⇒ ns-plain-single(c)

[158]

57

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.64. Plain Scalars

%YAML 1.1

!!map {
 ? !!str "simple key"
 : !!map {
 ? !!str "also simple"
 : !!str "value",
 ? !!str "not a simple key"
 : !!str "any value"
 }
}

simple key : {

also simple : value,

 ? not a

 simple key : any

 value

}

Legend:
ns-plain-single(c) ns-plain-multi(n,c)

The first line of any flow scalar is indented according to the collection it is contained in. Therefore, there are two cases
where a plain scalar begins on the first column of a line, without any preceding indentation spaces: a plain scalar used as
a simple key of a non-indented block mapping, and any plain scalar nested in a non-indented flow collection. In these
cases, the first line of the plain scalar must not conflict with a document boundary marker.

l-forbidden-content ::= /* start of line */
 (c-document-start | c-document-end)
 /* space or end of line */

[159]

Example 4.65. Forbidden Non-Indented Plain Scalar Content

ERROR:

 The --- and ... document

 start and end markers must
 not be specified as the
 first content line of a
 non-indented plain scalar.

---· ||| : foo

...· >>>: bar

[

---↓
,

...· ,

{

---· :

...· # Nested

}
]
...

58

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML provides several easy ways to present such content without conflicting with the document boundary markers. For
example:

Example 4.66. Document Marker Scalar Content

%YAML 1.1

!!map {
 ? !!str "---"
 : !!str "foo",
 ? !!str "...",
 : !!str "bar"
}
%YAML 1.1

!!seq [
 !!str "---",
 !!str "...",
 !!map {
 ? !!str "---"
 : !!str "..."
 }
]

" --- " : foo

... : bar

[

--- ,

... ,

{

? ---

: ...

}
]

...

Legend:
 Content --- and ...
 Document marker --- and ...

Thus, a single line plain scalar is a sequence of valid plain non-break printable characters, beginning and ending with non-
space character and not conflicting with a document boundary markers. All characters are considered content, including
any inner space characters.

ns-plain-single(c) ::= (ns-plain-first-char(c)
 (nb-plain-char(c)* ns-plain-char(c))?)
 - l-forbidden-content

[160]

In a multi-line plain scalar, line breaks are subject to (flow) line folding. Any prefix and trailing spaces are excluded from
the content. Like single quoted scalars, in plain scalars it is impossible to force the inclusion of the leading or trailing
spaces in the content. Therefore, plain scalars lines can only be broken where a single space character separates two non-
space characters.

s-l-plain-break(n) ::= s-ignored-white* b-l-folded-any(n,plain)[161]

59

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.67. Plain Line Breaks

%YAML 1.1

!!str "as space \
 trimmed\n\
 specific\L\n\
 none"

Legend:
s-l-plain-break(n)
s-ignored-white

 as space →↓
 trimmed ·↓
↓
 specific ⇓
↓
 none

A multi-line plain scalar contains additional continuation lines following the first line.

ns-plain-multi(n,c) ::= ns-plain-single(c) s-ns-plain-more(n,c)*[162]

Each continuation line must contain at least one non-space character. Note that it may be preceded by any number of
empty lines.

s-ns-plain-more(n,c) ::= s-l-plain-break(n)
 s-ignored-prefix(n,plain) ns-plain-char(c)
 (nb-plain-char(c)* ns-plain-char(c))?

[163]

Example 4.68. Plain Scalars

%YAML 1.1

!!str "first line\n\
 more line"

first line ·↓
···↓
··more line

Legend:
ns-plain-single(c) s-l-plain-break(n)
s-ignored-prefix(n,s) s-ns-plain-more(n,c)

4.5.2. Block Scalar Header

Block scalars are specified by several indicators given in a header preceding the content itself. The header is followed by
an ignored line break (with an optional comment).

c-b-block-header(s,m,t) ::= c-style-indicator(s)
 ((c-indentation-indicator(m)
 c-chomping-indicator(t))
 | (c-chomping-indicator(t)
 c-indentation-indicator(m)))
 s-b-comment

[164]

60

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.69. Block Scalar Header

%YAML 1.1

!!seq [
 !!str "literal\n",
 !!str "·folded\n",
 !!str "keep\n\n",
 !!str "·strip",
]

Legend:
c-b-block-header(s,m,t)

- | # Just the style↓
 literal

- >1 # Indentation indicator↓
 ·folded

- |+ # Chomping indicator↓
 keep

- >-1 # Both indicators↓
 ·strip

4.5.2.1. Block Style Indicator

The first character of the block scalar header is either “|” for a literal scalar or “>” for a folded scalar.

c-style-indicator(s) ::= s = literal ⇒ “|”
 s = folded ⇒ “>”

[165]

Example 4.70. Block Style Indicator

%YAML 1.1

!!seq [
 !!str "literal\n",
 !!str "folded\n",
]

- |

 literal

- >

 folded

Legend:
c-style-indicator(s)

4.5.2.2. Block Indentation Indicator

Typically, the indentation level of a block scalar is detected from its first non-empty line. This detection fails when this
line contains leading space characters (note it may safely start with a tab or a “#” character). When detection fails, YAML
requires that the indentation level for the content be given using an explicit indentation indicator. This level is specified
as the integer number of the additional indentation spaces used for the content. If the block scalar begins with leading
empty lines followed by a non-empty line, the indentation level is deduced from the non-empty line. In this case, it is an
error for any such leading empty line to contain more spaces than the indentation level deduced from the non-empty line.
It is always valid to specify an indentation indicator for a block scalar node, though a YAML processor should only do
so in cases where detection will fail.

c-indentation-indicator(m) ::= explicit(m) ⇒ ns-dec-digit - “0”
 detect(m) ⇒ /* empty */

[166]

61

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.71. Block Indentation Indicator

%YAML 1.1

!!seq [
 !!str "detected\n",
 !!str "\n\n# detected\n",
 !!str "·explicit\n",
 !!str "\t·detected\n",
]

Legend:
c-indentation-indicator(m)
s-indent(n)

- |

· detected

- >

·

··

·· # detected

- |1

· ·explicit

- >

· →
· detected

Example 4.72. Invalid Block Scalar Indentation Indicators

ERROR:
- A leading all-space line must

 not have too many spaces .

- A following text line must

 not be less indented .

- The text is less indented

 than the indicated level.

- |

· ·

·text
- >
··text

· text

- |1

· text

4.5.2.3. Block Chomping Indicator

YAML supports three possible block chomping methods:

Strip Stripping is specified using the “-” chomping indicator. In this case, the line break character of the last non-empty
line (if any) is excluded from the scalar's content. Any trailing empty lines are considered to be (empty) comment
lines and are also discarded.

Clip Clipping the default behavior used if no explicit chomping indicator is specified. In this case, The line break
character of the last non-empty line (if any) is preserved in the scalar's content. However, any trailing empty
lines are considered to be (empty) comment lines and are discarded.

Keep Keeping is specified using the “+” chomping indicator. In this case, the line break character of the last non-empty
line (if any) is preserved in the scalar's content. In addition, any trailing empty lines are each considered to
present a single trailng content line break. Note that these line breaks are not subject to folding.

The chomping method ised is a presentation detail and is not reflected in the serialization tree (and hence the representation
graph).

c-chomping-indicator(t) ::= t = strip ⇒ “-”
 t = clip ⇒ /* empty */
 t = keep ⇒ “+”

[167]

62

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Thus, the final line break of a block scalar may be included or excluded from the content, depending on the specified
chomping indicator.

b-chomped-last(t) ::= t = strip ⇒ b-strip-last
 t = clip ⇒ b-keep-last
 t = keep ⇒ b-keep-last

[168]

b-strip-last ::= b-ignored-any[169]
b-keep-last ::= b-normalized[170]

Example 4.73. Chomping Final Line Break

%YAML 1.1

!!map {
 ? !!str "strip"
 : !!str "text",
 ? !!str "clip"
 : !!str "text\n",
 ? !!str "keep"
 : !!str "text\L",
}

strip: |-

 text ¶

clip: |

 text ↓
keep: |+

 text ⇓

Legend:
b-strip-last
b-keep-last

Similarly, empty lines immediately following the block scalar may be interpreted either as presenting trailing line breaks
or as (empty) comment lines, depending on the specified chomping indicator.

l-chomped-empty(n,t) ::= t = strip ⇒ l-strip-empty(n)
 t = clip ⇒ l-strip-empty(n)
 t = keep ⇒ l-keep-empty(n)

[171]

l-strip-empty(n) ::= (s-indent(≤n) b-ignored-any)* l-trail-comments(n)?[172]
l-keep-empty(n) ::= l-empty(n,literal)* l-trail-comments(n)?[173]

Explicit comment lines may then follow. To prevent ambiguity, the first such comment line must be less indented than
the block scalar content. Additional comment lines, if any, are not so restricted.

l-trail-comments(n) ::= s-indent(<n) c-nb-comment-text b-ignored-any
 l-comment*

[174]

63

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.74. Block Scalar Chomping

%YAML 1.1

!!seq [
 ? !!str "strip"
 : !!str "text",
 ? !!str "clip"
 : !!str "text\n",
 ? !!str "keep"
 : !!str "text\L\n",
]

Legend:
l-strip-empty(n)
l-keep-empty(n)
l-trail-comments(n)

 # Strip
 # Comments:
strip: |-
 # text¶

··⇓
·# Clip

··# comments:

↓
clip: |
 # text↓
·¶

·# Keep

··# comments:

↓
keep: |+
 # text⇓
↓
·# Trail

··# comments.

Note that if a block scalar consists of only empty lines, then these lines are considered trailing lines and hence are affected
by chomping.

Example 4.75. Empty Scalar Chomping

%YAML 1.1

!!seq [
 ? !!str "strip"
 : !!str "",
 ? !!str "clip"
 : !!str "",
 ? !!str "keep"
 : !!str "\n",
]

strip: >-

↓
clip: >

↓
keep: |+

↓

Legend:
l-strip-empty(n)
l-keep-empty(n)

4.5.3. Block Scalar Styles
YAML provides two Block scalar styles, literal and folded. The block scalar content is is ended by a less-indented line or
the end of the characters stream.

64

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.5.3.1. Literal

The literal style is the simplest, most restricted and most readable scalar style. It is especially suitable for source code or
other text containing significant use of indicators, escape sequences and line breaks. In particular, literal content lines may
begin with a tab or a “#” character.

c-l+literal(n) ::= c-b-block-header(literal,m,t)
 l-literal-content(n+m,t)

[175]

Example 4.76. Literal Scalar

%YAML 1.1

!!seq [
 !!str "literal\n\
 \ttext\n"
]

| # Simple block scalar↓
 literal↓
 →text↓

Legend:
c-b-block-header(s,m,t)
l-literal-content(n,t)

Inside literal scalars, each non-empty line may be preceded by any number of empty lines. No processing is performed
on these lines except for stripping the indentation. In particular, such lines are never folded. Literal non-empty lines may
include only spaces, tabs, and other printable characters.

l-nb-literal-text(n) ::= l-empty(n,block)* s-indent(n) nb-char+[176]

The line break following a non-empty inner literal line is normalized. Again, such line breaks are never folded.

l-literal-inner(n) ::= l-nb-literal-text(n) b-normalized[177]

Example 4.77. Inner Literal Lines

%YAML 1.1

!!str "\nliteral\n\ntext\n"

Legend:
l-nb-literal-text(n)
l-nb-literal-inner(n)

|

·

··

··literal↓
·

··text ↓
↓
·# Comment

The line break following the final non-empty literal line is subject to chomping.

l-literal-last(n,t) ::= l-nb-literal-text(n) b-chomped-last(t)[178]

Trailing empty lines following the last literal non-empty line, if any, are also subject to chomping.

l-literal-content(n,t) ::= (l-literal-inner(n)* l-literal-last(n,t))?
 l-chomped-empty(n,t)?

[179]

65

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.78. Last Literal Line

%YAML 1.1

!!str "\nliteral\n\ntext\n"

Legend:
l-nb-literal-text(n)
l-nb-literal-last(n,t)
b-chomped-last(t)
l-chomped-empty(n,t)

|

·

··

··literal ↓
·

··text↓
↓
·# Comment

4.5.3.2. Folded

The folded style is similar to the literal style. However, unlike literal content, folded content is subject to (block) line
folding.

c-l+folded(n) ::= c-b-block-header(folded,m,t)
 l-folded-content(n+m,t)

[180]

Example 4.79. Folded Scalar

%YAML 1.1

!!seq [
 !!str "folded text\n\
 \ttext\n"
]

> # Simple folded scalar↓
 folded↓
 text↓
 →lines↓

Legend:
c-b-block-header(s,m,t)
l-folded-content(n,t)

Line folding allows long content lines to be broken anywhere a single space character separates two non-space characters.

s-nb-folded-line(n) ::= s-indent(n) ns-char nb-char*[181]
l-nb-folded-lines(n) ::= (s-nb-folded-line(n)
 b-l-folded-any(n,folded))*
 s-nb-folded-line(n)

[182]

66

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.80. Folded Lines

%YAML 1.1

!!seq [
 !!str "folded line\n\
 next line\n\
 \ * bullet\n\
 \ * list\n\
 last line\n"
]

Legend:
l-nb-folded-lines(n)

>

·folded↓
·line↓
↓
·next

·line ↓

 * bullet
 * list

·last↓
·line ↓

Comment

Lines starting with white space characters (“more indented” lines) are not folded. Note that folded scalars, like literal
scalars, may contain tab characters. However, any such characters must be properly indented using only space characters.

b-l-spaced(n) ::= b-normalized l-empty(n,folded)*[183]
s-nb-spaced-text(n) ::= s-indent(n) s-white nb-char*[184]
l-nb-spaced-lines(n) ::= (s-nb-spaced-text(n) b-l-spaced(n))*
 s-nb-spaced-text(n)

[185]

Example 4.81. Spaced Lines

%YAML 1.1

!!seq [
 !!str "folded line\n\
 next line\n\
 \ * bullet\n\
 \ * list\n\
 last line\n"
]

Legend:
l-nb-spaced-lines(n)

>
 folded
 line

 next
 line

···* bullet↓
···* list ↓

 last
 line

Comment

67

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Folded content may start with either line type. If the content begins with a “more indented” line (starting with spaces), an
indentation indicator must be specified in the block header. Note that leading empty lines and empty lines separating lines
of a different type are never folded.

l-nb-start-with-folded(n) ::= l-empty(n,block)* l-nb-folded-lines(n)
 (b-normalized l-nb-start-with-spaced(n))?

[186]

l-nb-start-with-spaced(n) ::= l-empty(n,block)* l-nb-spaced-lines(n)
 (b-normalized l-nb-start-with-folded(n))?

[187]

l-nb-start-with-any(n) ::= l-nb-start-with-folded(n)
 | l-nb-start-with-spaced(n)

[188]

Example 4.82. Empty Separation Lines

%YAML 1.1

!!seq [
 !!str "folded line\n\
 next line\n\
 \ * bullet\n\
 \ * list\n\
 last line\n"
]

Legend:
b-normalized l-empty(n,s)

>
 folded
 line

 next

 line ↓
↓
 * bullet

 * list ↓
↓
 last
 line

Comment

The final line break, and trailing empty lines, if any, are subject to chomping and are never folded.

l-folded-content(n,t) ::= (l-nb-start-with-any(n) b-chomped-last(t))?
 l-chomped-empty(n,t)

[189]

Example 4.83. Final Empty Lines

%YAML 1.1

!!seq [
 !!str "folded line\n\
 next line\n\
 \ * bullet\n\
 \ * list\n\
 last line\n"
]

Legend:
b-chomped-last(t) l-chomped-empty(n,t)

>
 folded
 line

 next
 line

 * bullet
 * list

 last

 line ↓
↓
Comment

68

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

4.6. Collection Styles
Collection content can be presented in a single flow style and a single block style for each of the two collection kinds (sequence
and mapping). In addition, YAML provides several in-line compact syntax forms for improved readability of common
special cases. In all cases, the collection style is a presentation detail and must not be used to convey content information.

A flow collection may be nested within a block collection (flow-out context), nested within another flow collection (flow-
in context), or be a part of a simple key (flow-key context). Flow collection entries are separated by the “,” indicator.
The final “,” may be ommitted. This does not cause ambiguity because flow collection entries can never be completely
empty.

in-flow(c) ::= c = flow-out ⇒ flow-in
 c = flow-in ⇒ flow-in
 c = flow-key ⇒ flow-key

[190]

4.6.1. Sequence Styles
Sequence content is an ordered collection of sub-nodes. Comments may be interleaved between the sub-nodes. Sequences
may be presented in a flow style or a block style. YAML provides compact notations for in-line nesting of a collection in
a block sequence and for nesting a single pair mapping in a flow sequence.

4.6.1.1. Flow Sequences

Flow sequence content is denoted by surrounding “[” and “]” characters.

c-flow-sequence(n,c) ::= “[” s-separate(n,c)?
 ns-s-flow-seq-inner(n,c)*
 ns-s-flow-seq-last(n,c)?
 “]”

[191]

Sequence entries are separated by a “,” character.

ns-s-flow-seq-inner(n,c) ::= ns-s-flow-seq-entry(n,c) “,” s-separate(n,c)?[192]

The final entry may omit the “,” character. This does not cause ambiguity since sequence entries must not be completely
empty.

ns-s-flow-seq-last(n,c) ::= ns-s-flow-seq-entry(n,c)[193]

69

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.84. Flow Sequence

%YAML 1.1

!!seq [
 !!seq [
 !!str "inner",
 !!str "inner",
],
 !!seq [
 !!str "inner",
 !!str "last",
],
]

- [inner, inner,]

- [inner, last]

Legend:
c-sequence-start c-sequence-end
ns-s-flow-seq-inner(n,c)
ns-s-flow-seq-last(n,c)

Any flow node may be used as a flow sequence entry. In addition, YAML provides a compact form for the case where a
flow sequence entry is a mapping with a single key: value pair, and neither the mapping node nor its single key node have
any properties specified.

ns-s-flow-seq-entry(n,c) ::= (ns-flow-node(n,in-flow(c))
 s-separate(n,in-flow(c))?)
 | ns-s-flow-single-pair(n,in-flow(c))

[194]

Example 4.85. Flow Sequence Entries

%YAML 1.1

!!seq [
 !!str "double quoted",
 !!str "single quoted",
 !!str "plain text",
 !!seq [
 !!str "nested",
],
 !!map {
 ? !!str "single"
 : !!str "pair"
 }
]

[

"double

 quoted" , 'single

 quoted' ,

plain

 text , [nested] ,

single: pair ,

]

Legend:
ns-flow-node(n,c)
ns-s-flow-single-pair(n,c)

4.6.1.2. Block Sequences

A block sequence is simply a series of entries, each presenting a single node.

c-l-block-sequence(n,c) ::= c-l-comments l-block-seq-entry(n,c)+[195]

70

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.86. Block Sequence

%YAML 1.1

!!map {
 ? !!str "block"
 : !!seq [
 !!str "one",
 !!str "two"
]
}

block: # Block

 # sequence↓
- one↓
- two : three↓

Legend:
c-l-comments
l-block-seq-entry(n,c)

Each block sequence entry is denoted by a leading “-” indicator, separated by spaces from the entry node.

l-block-seq-entry(n,c) ::= s-indent(seq-spaces(n,c)) “-”
 s-l+block-indented(seq-spaces(n,c),c)

[196]

People read the “-” character as part of the indentation. Hence, block sequence entries require one less space of indentation,
unless the block sequence is nested within another block sequence (hence the need for the block-in context and
block-out context).

seq-spaces(n,c) ::= c = block-out ⇒ n-1
 c = block-in ⇒ n

[197]

Example 4.87. Block Sequence Entry Indentation

%YAML 1.1

!!map {
 ? !!str "block"
 : !!seq [
 !!str "one",
 !!seq [
 !!str "two"
]
]
}

block:

- one

-

·- two

Legend:
s-indent(n)
s-l+block-indented(n,c)

The entry node may be either completely empty, a normal block node, or use a compact in-line form.

s-l+block-indented(n,c) ::= s-l-empty-block
 | s-l+block-node(n,c)
 | s-l+block-in-line(n)

[198]

71

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The compact in-line form may be used in the common case when the block sequence entry is itself a block collection, and
neither the collection entry nor its first nested node have any properties specified. In this case, the nested collection may
be specified in the same line as the “-” character, and any following spaces are considered part of the in-line nested col-
lection's indentation.

s-l+block-in-line(n) ::= s-indent(m>0)
 (ns-l-in-line-sequence(n+1+m)
 | ns-l-in-line-mapping(n+1+m))

[199]

An in-line block sequence begins with an indented same-line sequence entry, followed by optional additional normal block
sequence entries, properly indented.

ns-l-in-line-sequence(n) ::= “-” s-l+block-indented(n,block-out)
 l-block-seq-entry(n,block-out)*

[200]

Example 4.88. Block Sequence Entry Types

%YAML 1.1

!!seq [
 !!str "",
 !!str "block node\n",
 !!seq [
 !!str "one",
 !!str "two",
]
 !!map {
 ? !!str "one"
 : !!str "two",
 }
]

- # Empty

- |

 block node

- - one # in-line

 - two # sequence

- one: two # in-line

 # mapping

Legend:
s-l-empty-block
s-l+block-node(n,c)
s-l+block-in-line(n)

4.6.2. Mapping Styles
A mapping node is an unordered collection of key: value pairs. Of necessity, these pairs are presented in some order in the
characters stream. As a serialization detail, this key order is preserved in the serialization tree. However it is not reflected
in the representation graph and hence must not be used when constructing native data structures. It is an error for two equal
keys to appear in the same mapping value. In such a case the YAML processor may continue, ignoring the second key: value
pair and issuing an appropriate warning. This strategy preserves a consistent information model for one-pass and random
access applications.

4.6.2.1. Flow Mappings

Flow mapping content is denoted by surrounding “{” and “}” characters.

c-flow-mapping(n,c) ::= “{” s-separate(n,c)?
 ns-s-flow-map-inner(n,c)*
 ns-s-flow-map-last(n,c)?
 “}”

[201]

72

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Mapping entries are separated by a “,” character.

ns-s-flow-map-inner(n,c) ::= ns-s-flow-map-entry(n,c) “,” s-separate(n,c)?[202]

The final entry may omit the “,” character. This does not cause ambiguity since mapping entries must not be completely
empty.

ns-s-flow-map-last(n,c) ::= ns-s-flow-map-entry(n,c)[203]

Example 4.89. Flow Mappings

%YAML 1.1

!!seq [
 !!map {
 ? !!str "inner"
 : !!str "entry",
 ? !!str "also"
 : !!str "inner"
 },
 !!map {
 ? !!str "inner"
 : !!str "entry",
 ? !!str "last"
 : !!str "entry"
 }
]

- { inner : entry , also: inner , }

- { inner: entry, last : entry }

Legend:
c-mapping-start c-mapping-end
ns-s-flow-map-inner(n,c)
ns-s-flow-map-last(n,c)

Flow mappings allow two forms of keys: explicit and simple.

Explicit Keys An explicit key is denoted by the “?” indicator, followed by separation spaces.

s-flow-separated(n,c) ::= (s-separate(n,c) ns-flow-node(n,in-flow(c))
 s-separate(n,c)?)
 | (e-empty-flow s-separate(n,c))

[204]

c-s-flow-explicit-key(n,c) ::= “?” s-flow-separated(n,c)[205]

Simple Keys A simple key has no identifying mark. It is recognized as being a key either due to being inside a flow
mapping, or by being followed by an explicit value. Hence, to avoid unbound lookahead in YAML
processors, simple keys are restricted to a single line and must not span more than 1024 stream characters
(hence the need for the flow-key context). Note the 1024 character limit is in terms of Unicode characters
rather than stream octets, and that it includes the separation following the key itself.

ns-s-flow-simple-key(n,c) ::= ns-flow-node(n,flow-key) s-flow-separated(n,c)?[206]

73

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 4.90. Flow Mapping Keys

%YAML 1.1

!!map {
 ? !!str ""
 : !!str "value",
 ? !!str "explicit key"
 : !!str "value",
 ? !!str "simple key"
 : !!str "value",
 ? !!seq [
 !!str "collection",
 !!str "simple",
 !!str "key"
]
 : !!str "value"
}

{

? : value # Empty key

? explicit

 key : value,

simple key : value

[collection, simple, key] : value

}

Legend:
c-s-flow-explicit-key(n,c)
ns-s-flow-simple-key(n,c)

Example 4.91. Invalid Flow Mapping Keys

ERROR:
- A simple key is restricted

 to only one line .

- A simple key msut not be

 longer than 1024 bytes.

{

multi-line

 simple key : value,

very long ...(>1KB)... key : value

}

Flow mappings also allow two forms of values, explicit and completely empty.

Explicit Values An explicit value is denoted by the “:” indicator, followed by separation spaces.

c-s-flow-explicit-value(n,c) ::= “:” s-flow-separated(n,c)[207]

Example 4.92. Flow Mapping Values

%YAML 1.1

!!map {
 ? !!str "key"
 : !!str "value",
 ? !!str "empty"
 : !!str "",
}

{

key : value ,

empty :° # empty value↓
}

Legend:
c-s-flow-explicit-value(n,c)

74

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Thus, there are four possible combinations for a flow mapping entry:

• Explicit key and explicit value:

c-s-flow-explicit-explicit(n,c) ::= c-s-flow-explicit-key(n,c)
 c-s-flow-explicit-value(n,c)

[208]

• Explicit key and completely empty value:

c-s-flow-explicit-empty(n,c) ::= c-s-flow-explicit-key(n,c) e-empty-flow[209]

• Simple key and explicit value:

ns-s-flow-simple-explicit(n,c) ::= ns-s-flow-simple-key(n,c)
 c-s-flow-explicit-value(n,c)

[210]

• Simple key and completely empty value:

ns-s-flow-simple-empty(n,c) ::= ns-s-flow-simple-key(n,c) e-empty-flow[211]

Inside flow mappings, all four combinations may be used.

ns-s-flow-map-entry(n,c) ::= c-s-flow-explicit-explicit(n,c)
 | c-s-flow-explicit-empty(n,c)
 | ns-s-flow-simple-explicit(n,c)
 | ns-s-flow-simple-empty(n,c)

[212]

Example 4.93. Flow Mapping Key: Value Pairs

%YAML 1.1

!!map {
 ? !!str "explicit key1"
 : !!str "explicit value",
 ? !!str "explicit key2"
 : !!str "",
 ? !!str "explicit key3"
 : !!str "",
 ? !!str "simple key1"
 : !!str "explicit value",
 ? !!str "simple key2"
 : !!str "",
 ? !!str "simple key3"
 : !!str "",
}

{

? explicit key1 : Explicit value ,

? explicit key2 :° , # Explicit empty

? explicit key3, # Empty value

simple key1 : explicit value ,

simple key2 :° , # Explicit empty

simple key3 , # Empty value

}

Legend:
c-s-flow-explicit-explicit(n,c)
c-s-flow-explicit-empty(n,c)
ns-s-flow-simple-explicit(n,c)
ns-s-flow-simple-empty(n,c)

75

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML also allows omitting the surrounding “{” and “}” characters when nesting a flow mapping in a flow sequence if
the mapping consists of a single key: value pair and neither the mapping nor the key have any properties specified. In this
case, only three of the combinations may be used, to prevent ambiguity.

ns-s-flow-single-pair(n,c) ::= c-s-flow-explicit-explicit(n,c)
 | c-s-flow-explicit-empty(n,c)
 | ns-s-flow-simple-explicit(n,c)

[213]

Example 4.94. Single Pair Mappings

%YAML 1.1

!!seq [
 !!map {
 ? !!str "explicit key1"
 : !!str "explicit value",
 },
 !!map {
 ? !!str "explicit key2"
 : !!str "",
 },
 !!map {
 ? !!str "explicit key3"
 : !!str "",
 },
 !!map {
 ? !!str "simple key1"
 : !!str "explicit value",
 },
]

[

? explicit key1 : explicit value ,

? explicit key2 :° , # Explicit value

? explicit key3, # Empty value

simple key1 : explicit value ,

simple key2 :° , # Explicit empty

]

Legend:
c-s-flow-explicit-explicit(n,c)
c-s-flow-explicit-empty(n,c)
ns-s-flow-simple-explicit(n,c)

4.6.2.2. Block Mappings

A Block mapping is simply a series of entries, each presenting a key: value pair.

c-l-block-mapping(n) ::= c-l-comments
 (s-indent(n) ns-l-block-map-entry(n))+

[214]

Example 4.95. Block Mappings

%YAML 1.1

!!map {
 ? !!str "block"
 : !!map {
 !!str "key",
 !!str "value"
 }
}

block: # Block

 # mapping↓
· key: value↓

Legend:
c-l-comments
s-indent(n)
ns-l-block-map-entry(n)

76

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

A block mapping entry may be presented using either an explicit or a simple key.

ns-l-block-map-entry(n) ::= ns-l-block-explicit-entry(n)
 | ns-l-block-simple-entry(n)

[215]

Explicit Key Entries Explicit key nodes are denoted by the “?” character. YAML allows here the same inline compact
notation described above for block sequence entries, in which case the “?” character is considered
part of the key's indentation.

ns-l-block-explicit-key(n) ::= “?” s-l+block-indented(n,block-out)

[216]

• In an explicit key entry, value nodes begin on a separate line and are denoted by by the “:” character. Here again
YAML allows the use of the inline compact notation which case the “:” character is considered part of the values's
indentation.

l-block-explicit-value(n) ::= s-indent(n) “:”
 s-l+block-indented(n,block-out)

[217]

• An explicit key entry may also use a completely empty value.

ns-l-block-explicit-entry(n) ::= ns-l-block-explicit-key(n)
 (l-block-explicit-value(n)
 | e-empty-flow)

[218]

Example 4.96. Explicit Block Mapping Entries

%YAML 1.1

!!map {
 ? !!str "explicit key"
 : !!str "",
 ? !!str "block key\n"
 : !!seq [
 !!str "one",
 !!str "two",
]
}

? explicit key # implicit value↓ °

? |

 block key↓
: - one # explicit in-line

 - two # block value↓

Legend:
ns-l-block-explicit-key(n)
l-block-explicit-value(n)
e-empty-flow

Simple Key Entries YAML allows the “?” character to be omitted for simple keys. Similarly to flow mapping, such a
key is recognized by a following “:” character. Again, to avoid unbound lookahead in YAML pro-
cessors, simple keys are restricted to a single line and must not span more than 1024 stream characters.
Again, this limit is in terms of Unicode characters rather than stream octets, and includes the separation
following the key, if any.

ns-block-simple-key(n) ::= ns-flow-node(n,flow-key)
 s-separate(n,block-out)? “:”

[219]

77

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

• In a simple key entry, an explicit value node may be presented in the same line. Note however that in this case, the
key is not considered to be a form of indentation, hence the compact in-line notation must not be used. The value fol-
lowing the simple key may also be completely empty.

s-l+block-simple-value(n) ::= s-l+block-node(n,block-out)
 | s-l-empty-block

[220]

ns-l-block-simple-entry(n) ::= ns-block-simple-key(n)
 s-l+block-simple-value(n)

[221]

Example 4.97. Simple Block Mapping Entries

%YAML 1.1

!!map {
 ? !!str "plain key"
 : !!str "",
 ? !!str "quoted key\n"
 : !!seq [
 !!str "one",
 !!str "two",
]
}

plain key: ° # empty value↓
"quoted key": ↓
- one # explicit next-line

- two # block value↓

Legend:
ns-block-simple-key(n)
s-l+block-simple-value(n)

An in-line block mapping begins with a same-line mapping entry, followed by optional additional normal block mapping
entries, properly indented.

ns-l-in-line-mapping(n) ::= ns-l-block-map-entry(n)
 (s-indent(n) ns-l-block-map-entry(n))*

[222]

Example 4.98. In-Line Block Mappings

%YAML 1.1

!!seq {
 !!map {
 ? !!str "sun"
 : !!str "yellow",
 },
 !!map {
 ? !!map {
 ? !!str "earth"
 : !!str "blue"
 }
 : !!map {
 ? !!str "moon"
 : !!str "white"
 }
 }
}

- sun: yellow↓
- ? earth: blue↓
 : moon: white↓

Legend:
ns-l-in-line-mapping(n)

78

Syntax

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Terms Index
Indicators
! local tag, 14, 39, 45
! named handle, 28, 40, 45
! non-specific tag, 18, 46
! tag indicator, 8, 23, 39–40, 44
" double quoted style, 24, 29, 51, 54
comment, 5, 14, 23, 32, 57, 61, 65
% directive, 24, 37
% escaping in URI, 28, 45
& anchor, 5, 23, 44
' single quoted style, 24, 54
* alias, 5, 23, 49
+ keep chomping, 62
, end flow entry, 22, 57, 69, 73
- block sequence entry, 4, 21, 31, 57, 71
- strip chomping, 62
: mapping value, 4, 21, 31, 57, 74, 77
< … > verbatim tag, 45
> folded style, 6, 24, 61
? mapping key, 6, 21, 31, 57, 73, 77
? non-specific tag, 18, 46
@ reserved indicator, 25
[start flow sequence, 22, 28, 57, 69
\ escaping in double quoted style, 28, 28–29, 51–54
] end flow sequence, 22, 28, 57, 69
` reserved indicator, 25
{ start flow mapping, 22, 57, 72
| literal style, 6, 24, 61
} end flow mapping, 22, 57, 72

A
alias

information model, 1–2, 5, 11, 14, 15, 17–19
syntax, 23, 44, 49

anchor
information model, 5, 11, 14, 15, 18–19
syntax, 23, 43–44, 44, 49

application, 1–2, 7–8, 10, 10–14, 19, 39–40, 45, 72
available tag, 19

B
block collection style

information model, 4, 6, 16
syntax, 32, 47, 69, 72

block mapping style
information model, 16
syntax, 58, 76

block scalar header, 60, 61
block scalar style

information model, 16
syntax, 27, 35, 51, 60–61, 63–64, 64

block sequence style
information model, 4, 16
syntax, 21, 31–32, 69, 70, 77

block style
information model, 2, 6, 16, 19
syntax, 31, 36, 47, 50, 71

block-in context, 31, 71
block-out context, 31, 71
byte order mark, 21, 42–43

C
canonical form, 2, 14, 17–18
character encoding, 21, 28, 42–43
chomping, 26, 31, 35–36, 62, 65, 68
clip chomping, 31, 62
collection

information model, 2, 12, 13, 14–15, 17–19
syntax, 32, 47, 58, 69, 72

comment
information model, 5, 11, 15, 17, 18
syntax, 23, 32, 33, 35, 37, 41–43, 50–51, 57, 60, 62–63,
69

complete representation, 18, 18–19, 46
completely empty node, 41, 50, 50–51, 69, 71, 73–75, 77–78
compose, 11, 15, 18–19, 44, 46
construct, 10, 11, 14, 18–19, 72
content

information model, 2, 11, 13, 14, 16–19, 26, 28, 31–34,
36, 40–41, 44, 51, 69
syntax, 21, 31, 43, 47, 49–50, 52–53, 55–56, 59–64, 66,
68

context, 31, 57

D
directive

information model, 11, 15, 17
syntax, 24, 36, 37, 41–43

document
information model, 2, 5, 15, 16–17, 19
syntax, 21, 36–37, 39–43, 41, 49

document boundary marker, 5, 15, 36, 40, 41–43, 58–59
double quoted style

information model, 2, 7, 16
syntax, 20, 24, 28, 31, 47, 51, 56

dump, 10

E
empty line, 2, 6, 32, 35, 35–36, 51, 60–65, 68
equality, 10, 12–14, 14, 17–19, 72
escaped (ignored) line break, 26, 52
escaping in double quoted style, 2, 7, 20, 28, 51–53, 65

79

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

escaping in single quoted style, 54
escaping in URI, 14, 28, 45
explicit document, 41, 42–43
explicit key, 73, 77
explicit value, 74, 78

F
flow collection style

information model, 16
syntax, 20, 22, 31, 47, 57–58, 69

flow mapping style
information model, 4, 16
syntax, 22, 72

flow scalar style
information model, 7, 16
syntax, 36, 41, 47, 51, 58

flow sequence style
information model, 4, 16
syntax, 22, 69, 76

flow style
information model, 2, 4, 16
syntax, 31, 36, 47, 49, 50, 70

flow-in context, 31, 57, 69
flow-key context, 31, 69, 73
flow-out context, 31, 57, 69
folded style

information model, 6, 16
syntax, 24, 31, 36, 51, 61, 64, 66

format, 11, 14–15, 17

G
generic line break, 26, 29, 35–36
global tag, 2, 8, 11, 13, 18, 39, 45

I
identified, 5, 15, 18
identity, 14
ignored line prefix, 34, 53, 56, 59
ill-formed stream, 11, 17, 18
implicit document, 41, 42
in-line mapping style, 78
in-line sequence style, 72
in-line style

information model, 16
syntax, 32, 47, 69, 72, 77–78

indentation indicator, 61, 68
indentation space, 1–2, 4, 11–12, 16, 18, 20, 27, 30–34, 31,
36–37, 41, 47, 53, 56, 58, 61, 63–65, 67, 71–72, 77–78
indicator, 2, 4, 16, 21, 31–32, 36, 47, 50–51, 57, 60, 65
invalid content, 17, 19

K
keep chomping, 31, 62
key

information model, 1, 4, 6, 10–12, 13, 14–15, 18–19
syntax, 21, 57, 70, 72

key order, 11, 14, 15, 72
kind, 10–12, 13, 14, 16, 18–19, 47, 69

L
line break character, 2, 6–7, 20, 25, 26–27, 31, 35–36, 50, 52,
55, 59–60, 62–63, 65, 68
line break normalization, 26, 65
line folding, 2, 6–7, 35, 51–52, 55, 59, 62, 65–68
literal style

information model, 2, 6, 16
syntax, 24, 31, 51, 61, 64, 65, 66–67

load, 10, 17
load failure point, 11, 17
local tag, 8, 11, 14, 18, 39, 45

M
mapping

information model, 1–2, 4, 10–12, 13, 14–15, 19
syntax, 69–70, 72

may, 3
more indented line, 6, 36, 67
must, 3

N
named tag handle, 28, 40, 45
need not, 3
node

information model, 5, 11–12, 13, 14–19
syntax, 31–32, 41, 43, 44, 46, 49, 69–72

node property, 41, 43, 49–50, 70, 72, 76
non-specific tag, 7, 11, 17, 18, 20, 46, 51

O
optional, 3

P
parse, 11, 15, 18–19, 26, 28, 40, 42–43, 45
partial representation, 17, 19
plain style

information model, 7, 16, 18–19
syntax, 31, 41, 46–47, 49, 51, 57

present, 10–11, 11, 13–15, 17, 19–20, 26, 28, 31, 36, 41, 44,
47, 49, 51, 59, 62–63, 69–70, 72, 76–78
presentation, 10–12, 15, 41, 45
presentation detail, 11, 11–12, 15–18, 26, 28, 31–34, 36–37,
40–41, 51, 62, 69
primary tag handle, 39, 45

80

Terms Index

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

printable character, 1–2, 20, 28, 54–55, 59, 65
processor, 3, 10, 10–11, 14–15, 17–21, 25–26, 37, 40–41, 44–
45, 61, 72–73, 77

Q
quoted style

information model, 7, 16, 19
syntax, 27, 47, 51

R
recognized tag, 19
recommended, 3
represent, 1–2, 10, 13–15
representation, 10–12, 12, 14–17, 19, 32, 37, 44–45, 62, 72
required, 3
reserved directive, 17, 37
reserved indicator, 25
root node, 12, 18, 36, 41

S
scalar

information model, 1–2, 6, 10–12, 13, 14, 16–19
syntax, 25–28, 31–34, 47, 51, 57, 62, 65

secondary tag handle, 40
separation space, 27, 32, 33, 71, 73–74, 77
sequence

information model, 1–2, 10, 12, 13, 14–15
syntax, 69

serialization, 10–12, 14, 15–17, 32, 37, 44–45, 62, 72
serialization detail, 11, 15, 44, 72
serialize, 2, 11, 15, 49
shall, 3
should, 3
simple key, 31, 33, 51–52, 54, 57–58, 69, 73, 77
single pair style

information model, 16
syntax, 69–70, 76

single quoted style
information model, 7, 16
syntax, 24, 31, 47, 51, 54, 59

specific line break, 25, 29, 35
specific tag, 18, 46
stream

information model, 2, 5, 10–11, 15, 17–19
syntax, 20–21, 30–31, 36, 39–41, 42, 43, 50, 64, 72–73,
77

strip chomping, 31, 62
style, 11–12, 15, 16, 17–18, 41

T
tab, 2, 20, 27, 28, 31–34, 53, 56–57, 61, 65, 67

tag
information model, 2, 8, 11–14, 13, 17–19, 40
syntax, 23, 28, 38–39, 43, 44

TAG directive, 14, 17, 37, 38, 45
tag handle, 8, 11, 38–39, 39, 45
tag prefix, 38, 45
tag resolution, 14, 17, 18, 20, 45–46, 51
tag shorthand, 8, 20, 28, 38–40, 45

U
unavailable tag, 11, 17, 19
unidentified alias, 17, 18
unrecognized tag, 17, 19
unresolved tag, 17, 19

V
valid content, 19
value

information model, 1, 4, 6, 10, 13, 14–15, 18
syntax, 21, 57, 72

verbatim tag, 20, 45

W
well-formed stream, 18
white space, 27, 34, 36, 52–53, 55–56, 67

Y
YAML directive, 17, 37

81

Terms Index

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

	YAML Ain't Markup Language (YAML™) Version 1.1
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Prior Art
	1.3. Relation to XML
	1.4. Terminology

	Chapter 2. Preview
	2.1. Collections
	2.2. Structures
	2.3. Scalars
	2.4. Tags
	2.5. Full Length Example

	Chapter 3. Processing YAML Information
	3.1. Processes
	3.1.1. Represent
	3.1.2. Serialize
	3.1.3. Present
	3.1.4. Parse
	3.1.5. Compose
	3.1.6. Construct

	3.2. Information Models
	3.2.1. Representation Graph
	3.2.1.1. Nodes
	3.2.1.2. Tags
	3.2.1.3. Nodes Comparison

	3.2.2. Serialization Tree
	3.2.2.1. Keys Order
	3.2.2.2. Anchors and Aliases

	3.2.3. Presentation Stream
	3.2.3.1. Node Styles
	3.2.3.2. Scalar Formats
	3.2.3.3. Comments
	3.2.3.4. Directives

	3.3. Loading Failure Points
	3.3.1. Well-Formed and Identified
	3.3.2. Resolved
	3.3.3. Recognized and Valid
	3.3.4. Available

	Chapter 4. Syntax
	4.1. Characters
	4.1.1. Character Set
	4.1.2. Character Encoding
	4.1.3. Indicator Characters
	4.1.4. Line Break Characters
	4.1.5. Miscellaneous Characters
	4.1.6. Escape Sequences

	4.2. Syntax Primitives
	4.2.1. Production Parameters
	4.2.2. Indentation Spaces
	4.2.3. Comments
	4.2.4. Separation Spaces
	4.2.5. Ignored Line Prefix
	4.2.6. Line Folding

	4.3. YAML Character Stream
	4.3.1. Directives
	4.3.1.1. YAML Directive
	4.3.1.2. TAG Directive
	4.3.1.2.1. Tag Prefixes
	4.3.1.2.2. Tag Handles

	4.3.2. Document Boundary Markers
	4.3.3. Documents
	4.3.4. Complete Stream

	4.4. Nodes
	4.4.1. Node Anchors
	4.4.2. Node Tags
	4.4.3. Node Content
	4.4.4. Alias Nodes
	4.4.5. Complete Nodes
	4.4.5.1. Flow Nodes
	4.4.5.2. Block Nodes

	4.5. Scalar Styles
	4.5.1. Flow Scalar Styles
	4.5.1.1. Double Quoted
	4.5.1.2. Single Quoted
	4.5.1.3. Plain

	4.5.2. Block Scalar Header
	4.5.2.1. Block Style Indicator
	4.5.2.2. Block Indentation Indicator
	4.5.2.3. Block Chomping Indicator

	4.5.3. Block Scalar Styles
	4.5.3.1. Literal
	4.5.3.2. Folded

	4.6. Collection Styles
	4.6.1. Sequence Styles
	4.6.1.1. Flow Sequences
	4.6.1.2. Block Sequences

	4.6.2. Mapping Styles
	4.6.2.1. Flow Mappings
	4.6.2.2. Block Mappings

	Terms Index

