YAML Ain't Markup Language (YAML™)
Version 1.1

Working Draft 2004-12-28

Oren Ben-Kiki <or en@en- ki ki . or g>
Clark Evans <cce@l ar kevans. cone
Brian Ingerson <i ngy@tul . or g>

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Ain't Markup Language (YAML ™) Version 1.1
Working Draft 2004-12-28

by Oren Ben-Kiki, Clark Evans, and Brian Ingerson
Copyright © 2001-2004 Oren Ben-Kiki, Clark Evans, Brian Ingerson

Status of this Document

This specification is a draft reflecting consensus reached by members of the yaml-core mailing list
[http:/lists.sourceforge.net/lists/listinfo/yaml-core]. Any questions regarding this draft should be raised on this list. We
expect all further changes will be strictly limited to wording corrections and fixing production bugs.

We wish to thank implementers who have tirelessly tracked earlier versions of this specification, and our fabulous user
community whose feedback has both validated and clarified our direction.

Abstract

YAML™ (rhymeswith “camel”) isahuman-friendly, crosslanguage, Unicode based data serialization language designed
around the common native data structures of agile programming languages. It is broadly useful for programming needs
ranging from configuration files to Internet messaging to object persistence to data auditing. Together with the Unicode
standard for characters [http://www.unicode.org/], this specification provides all the information necessary to understand
YAML Version 1.1 and to creating programs that process Y AML information.

This document may be freely copied provided it is not modified.

http://lists.sourceforge.net/lists/listinfo/yaml-core
http://www.unicode.org/
http://www.unicode.org/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents

R 11 [0 Tox 1 o o PSPPSR 1
0t O o 7= 1
2 o) N o P 1
T =< = o g T (0 10, Y 2
O = 1 1011 0] oo | TSP SPPPTTR 3

A = (= Y= P 4
2 I o | ="o: o o L= PR 4
S 8 (o 11 =S PP 5
G TS o PPN 6
R = o PP PP PRI 7
2.5, FUIl Length EXAMPIE ...ttt ettt et 9

3. Processing YAML INFOIMMELION ueiiiiiiee ittt e ettt e e ettt e e e e et e e et et e e e eete e e e eebanaeeees 10
T R (0005 SO SPRS 10

N = o= = | PPN 10
B 2, SEITAlIZE ooniieii e e e et et aaaanas 11
I R = =5 = o | APPSR 11
I T == 1 TP 11
N T O ¢ PP PPPT 11
G T T O] = 1 (1 X PPN 11
T2 F 1 o) a0 7= 10 0 1LY Ko U= £ 11
3.2.1. REPreSENtaiON GrapN ittt e e et e e et e e e e e aeee 12
G T2 5t R N[To === PR 13
TN B I o = PSPPI 13
3.2.1.3. NOUES COMPAITSON .eetieeeeeti ettt e ettt ettt e ettt et e e et et e e et et e e et et e e e e et e e e eraa e 14
IS = aF- 114 (oo I I (= TN 14
2.2, KBYS OFEN ..ttt ettt ettt et ettt ettt r e 15
3.2.2.2. ANCNOIS AN AlTASES .uiitiiiiit e e et e e eans 15

R R = (== S = L0 S == 1 o N 15
3231 NOUE SEYIES .ottt 16
IR IS o= = g =0 01 PPN 17
TG R T 00 111 111= 0| £ TP PP 17
I N B 11 = o 1 V= S 17
3.3. L0ading Failure POINES iieieie ettt ettt e e e et e et e e e ab e e e nba s 17
3.3.1. Well-Formed and [Aentifietcoeiiiiiii e e e e e e e e e e 18
G I = (=== o) AV =" PPN 18
3.3.3. Recognized and Validooiiiiiieiiii e 19
R I NV 7 =1 o] L= 19

Y 1 - PP PPP 20

R @ g7 = o (= £ PP 20
O T O = = ot = . PP 20
4.1.2. CharaCter ENCOOING ceeeiieieii ettt ettt e et et et e et a e et et e e e e eba s 21
G T 1 o [0 o | O g = = o1 = = TP 21
N I 1 To Y (= O g = ok [= S PP 25
4.1.5. MISCEIAN@OUS CRArBCLEISvuiiiiiiii ettt e e e et e e e e e e e e e ens 26
4.1.6. ESCAPE SEUUEINCES ieeuietiieitta ettt et e et e et et e e e e et et et et e et et et e et ettt e e e 28

A.2. SYNEAX PrIMITIVES ...ttt e e et e ettt e e et et e et e et r e e ettt neeeert e e eentnaaeees 30
L T = (00 [0 o ([0 g I = T 011 6 T 30
A4.2.2. INENEALTION SPACES .. eevtueieiii ettt ettt ettt et et et e e et e et et e e et e e et e e et e e s 31
e T 00 1011 41= ¢ | T PPN 32
A.2.4. SEPAIALiON SPACES ..eevuueteiii ettt ettt ettt e et et e e et e e e e s 33
4.2.5.1gN0red LINE PrefiX ooveeieii et 34

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

YAML Ain't Markup Lan-
guage (YAML™) Version 1.1

ST T = o o] oo S 35
A.3. YAML CharaCter SITEAM ...ieeuiieiiiiiii et e e e ettt e e e et e e e e et e e e eeta e e e e ett e e e eete e eeeetenaeeeetnaeeeetnaaaees 36
TN B 11 = o=~ ORI 37
T I N |V L I = 1Y SO 37
N B N B] (= 1 Y= PSPPSR 38
T O T - o = = == PP 38
T i - o o = | = PP 39
4.3.2. Document BouNary MarKErScouuiiiiiiiiiii ettt e e e e e e e e et e e e e et e e et eeaa e eaes 40
G R R B T o: U ¢ 0= 0| PP PTP 41
B A @a g1 o] = (=TS =" 12 P 42
o N oo L=~ ST 43
o I oo [N g o o T PP 44
N N[L= = [44
e T oo LY @0 g = 1 | PPN 47
N L= N[L=~ PSSP 49
ST ©e 4o = (=] Lo =S 49
T I o o T NN [L= PP 49
S =] Voo QLo (=SSP 50
S o S Y =TSO 51
N I o o S o S Y PP 51
4.5.1.1. DOUDIE QUOLEA ...ttt ettt e e et e e e et e e e et e e e e et e e e et e e e et e e e e aa s 51
N S 1 o | = @ 1 =" PP 54
YN I T T OSSP PRTR PPN 57
A = (oo s o Tl == o = PP 60
o T Y o o Qs Y (= o (o= (o P 61
4.5.2.2. Block Indentation INAICAIOrooiiiiiiiiiii e e et eeeae e e ees 61
4.5.2.3. Block Chomping INAICAIONciveiiii e e e e e e e e e e e et e e e e eenas 62
4.5.3. BIOCK SCalAr SEYIES ..iiiiiiiii ettt 64
I I N == USRS 65
IR 2 o o = o PP 66
ST o 1= ot (o S 1Y = 69
<o (11 10 1S 1Y = 69
N I T L0 TS o 0= o= 69
N I =Y oo QS = |11 4o P 70
RV - o o T To 1S Y == 72
G T Lo V1Y o o1 o 72
B = o o Y, K=o o] o PP 76
QI 1 10T 0T L= G S SPPTSPN 79
iv

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1. Introduction

“YAML Ain't Markup Language” (abbreviated Y AML) isadata serialization language designed to be human-friendly and
work well with modern programming languages for common everyday tasks. This specification is both an introduction to
the YAML language and the concepts supporting it and also a complete reference of the information needed to develop
applications for processing YAML.

Open, interoperable and readily understandable tools have advanced computing immensely. YAML was designed from
the start to be useful and friendly to people working with data. It uses Unicode printable characters, some of which provide
structural information and the rest containing the dataitself. Y AML achieves aunique cleanness by minimizing the amount
of structural characters, and allowing the data to show itself in a natural and meaningful way. For example, indentation
may be used for structure, colons separate mapping key: value pairs, and dashes are used to “bullet” lists.

Thereare myriad flavors of datastructures, but they can all be adequately represented with three basic primitives: mappings
(hasheg/dictionaries), sequences (arrays/lists) and scalars (strings/numbers). Y AML leverages these primitives and adds a
simple typing system and aliasing mechanism to form a complete language for serializing any data structure. While most
programming languages can use YAML for data serialization, YAML excels in those languages that are fundamentally
built around the three basic primitives. These include the new wave of agile languages such as Perl, Python, PHP, Ruby
and Javascript.

There are hundreds of different languages for programming, but only a handful of languages for storing and transferring
data. Even though its potential isvirtually boundless, Y AML was specifically created to work well for common use cases
such as: configurationfiles, log files, interprocess messaging, cross-language data sharing, object persistence and debugging
of complex data structures. When data is easy to view and understand, programming becomes a simpler task.

1.1. Goals

The design goalsfor YAML are:

1. YAML iseasily readable by humans.

2. YAML matches the native data structures of agile languages.
3. YAML datais portable between programming languages.

4. YAML has aconsistent model to support generic tools.

5. YAML supports one-pass processing.

6. YAML isexpressive and extensible.

7. YAML iseasy to implement and use.

1.2. Prior Art

YAML'sinitial direction was set by the data serialization and markup language discussions among SML-DEV members
[http://www.docuverse.com/smidev/]. Later on it directly incorporated experience from Brian Ingerson's Perl module
Data::Denter [http://search.cpan.org/doc/INGY /Data-Denter-0.13/Denter.pod]. Since then YAML has matured through
ideas and support from its user community.

YAML integrates and builds upon concepts described by C [http://cm.bell-labs.com/cm/cs/cbook/index.html], Java
[http://java.sun.com/], Perl [http://www.perl.org/], Python [http://ww.python.org/], Ruby [http://www.ruby-lang.org/],
RFC0822 [http://www.ietf.org/rfc/rfc0822.txt] (MAIL), RFC1866 [http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt]

http://www.docuverse.com/smldev/
http://search.cpan.org/doc/INGY/Data-Denter-0.13/Denter.pod
http://cm.bell-labs.com/cm/cs/cbook/index.html
http://java.sun.com/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/
http://www.ietf.org/rfc/rfc0822.txt
http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

(HTML), RFC2045 [http://www.ietf.org/rfc/rfc2045.txt] (MIME), RFC2396 [http://www.ietf.org/rfc/rfc2396.txt] (URI),
XML [http://imww.w3.org/ TR/REC-xml.html], SAX [http://www.saxproject.org/] and SOAP [http://mww.w3.0org/ TR/SOAP].

The syntax of YAML was motivated by Internet Mail (RFC0822) and remains partially compatible with that standard.
Further, borrowing from MIME (RFC2045), Y AML's top-level production is a stream of independent documents; ideal
for message-based distributed processing systems.

Y AML'sindentation based scoping issimilar to Python's (without the ambiguities caused by tabs). Indented blocksfacilitate
easy inspection of the data's structure. Y AML'sliteral style leverages this by enabling formatted text to be cleanly mixed
within an indented structure without troublesome escaping. YAML also alows the use of traditional indicator-based
scoping similar to Perl's. Such flow content can be freely nested inside indented blocks.

YAML's double quoted style uses familiar C-style escape sequences. This enables ASCII encoding of non-printable or 8-
bit (1SO 8859-1) characters such as “\ x3B”. Non-printable 16-bit Unicode and 32-bit (ISO/IEC 10646) characters are
supported with escape sequences such as“\ u003B” and “\ U0000003B”.

Motivated by HTML'send-of-line normalization, Y AML'slinefolding employs an intuitive method of handling line breaks.
A singleline break is folded into a single space, while empty lines are interpreted as line break characters. This technique
allows for paragraphs to be word-wrapped without affecting the canonical form of the content.

YAML's core type system is based on the requirements of agile languages such as Perl, Python, and Ruby. YAML directly
supports both collection (mapping, sequence) and scalar content. Support for common types enables programmers to use
their language's native data structures for YAML manipulation, instead of requiring a special document object model
(DOM).

Like XML's SOAP, YAML supports serializing native graph data structures through an aliasing mechanism. Also like
SOAP, YAML provides for application-defined types. This allows YAML to represent rich data structures required for
modern distributed computing. Y AML provides globally unique type names using a namespace mechanism inspired by
Java's DNS based package naming convention and XML's URI based namespaces.

YAML was designed to support incremental interfaces that includes both input pull-style and output push-style one-pass
(SAX-like) interfaces. Together these enable Y AML to support the processing of large documents, such as a transaction
log, or continuous streams, such as a feed from a production machine.

1.3. Relation to XML

Newcomersto Y AML often search for itscorrelation to the eXtensible Markup Language (XML). While the two languages
may actually compete in several application domains, there is no direct correlation between them.

YAML isprimarily adata serialization language. XML was designed to be backwards compatible with the Standard Gen-
eralized Markup Language (SGML) and thus had many design constraints placed on it that Y AML does not share. Inheriting
SGML's legacy, XML is designed to support structured documentation, where YAML is more closely targeted at data
structures and messaging. Where XML is a pioneer in many domains, YAML is the result of lessons learned from XML
and other technologies.

It should be mentioned that there are ongoing efforts to define standard XML/Y AML mappings. This generally requires
that a subset of each language be used. For more information on using both XML and YAML, please visit ht-
tp:/fyaml.org/xml/index.html.

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml.html
http://www.saxproject.org/
http://www.w3.org/TR/SOAP
http://yaml.org/xml/index.html
http://yaml.org/xml/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Introduction

1.4. Terminology

This specification uses key words based on RFC2119 [http://www.ietf.org/rfc/rfc2119.txt] to indicate requirement level.
In particular, the following words are used to describe the actions of a Y AML processor:

May

Should

Must

The word may, or the adjective optional, mean that conforming Y AML processors are permitted, but need not
behave as described.

The word should, or the adjective recommended, mean that there could be reasons for a Y AML processor to
deviate from the behavior described, but that such deviation could hurt interoperability and should therefore
be advertised with appropriate notice.

The word must, or the term required or shall, mean that the behavior described is an absolute requirement of
the specification.

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2. Preview

This section provides aquick glimpse into the expressive power of YAML. Itisnot expected that the first-time reader grok
al of the examples. Rather, these selections are used as mativation for the remainder of the specification.

2.1. Collections

YAML's block collections use indentation for scope and begin each entry on its own line. Block sequences indicate each
entry with a dash and space (“-). Mappings use a colon and space (“: ") to mark each mapping key: value pair.

Example 2.1. Sequence of Scalars
(ball players)

Example 2.2. Mapping Scalarsto Scalars
(player statistics)

- Mark McGnire
- Sammy Sosa
- Ken Giffey

hr: 65
avg: 0.278
rbi: 147

Example 2.3. Mapping Scalarsto Sequences Example 2.4. Sequence of Mappings

(ball clubsin each league)

(players statistics)

aneri can:
- Boston Red Sox
- Detroit Tigers
- New Yor k Yankees

nati onal :
- New York Mets
- Chicago Cubs

- Atl anta Braves

nane: Mark McGnire

hr: 65

avg: 0.278
name: Sammy Sosa
hr: 63

avg: 0.288

YAML aso hasflow styles, using explicit indicatorsrather than indentation to denote scope. The flow sequenceiswritten
as acomma separated list within square brackets. In a similar manner, the flow mapping uses curly braces.

Example 2.5. Sequence of Sequences

Example 2.6. Mapping of Mappings

- [name , hr, avg]
- [Mark McGnire, 65, 0.278]
- [Sammy Sosa , 63, 0.288]

Mark McGwire: {hr: 65, avg: 0.278}
Sanmy Sosa: {

hr: 63,

avg: 0.288

}

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Preview

2.2. Structures

YAML uses three dashes (“- - - ") to separate documents within astream. Threedots (“. . . ") indicate the end of a doc-
ument without starting anew one, for usein communication channels. Comment lines begin with the Octothorpe (usually
called the “hash” or “pound” sign - “#").

Example 2.7. Two Documentsin a Stream Example 2.8. Play by Play Feed

(each with aleading comment) from a Game

Ranki ng of 1998 home runs

time: 20:03:20

- Mark McGnre pl ayer: Sammy Sosa

- Sanmy Sosa action: strike (mss)
- Ken Giffey

Team r anki ng time: 20:03:47

pl ayer: Sammy Sosa

- Chicago Cubs action: grand slam

- St Louis Cardinals

Repeated nodes are first identified by an anchor (marked with the ampersand - “&”), and are then aliased (referenced with
an asterisk - “* ") thereafter.

Example 2.9. Single Document with Example 2.10. Nodefor “Samry Sosa”
Two Comments appear stwicein thisdocument
hr: # 1998 hr ranking hr:

- Mark McGnire - Mark McGnire

- Sammy Sosa # Fol | owi ng node | abel ed SS
rbi: - &SS Sammy Sosa

1998 rbi ranking rbi:

- Sammy Sosa - *SS # Subsequent occurrence

- Ken Giffey - Ken Giffey

5

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Preview

A question mark and space (“?) indicate a complex mapping key. Within ablock collection, key: value pairs can start

immediately following the dash, colon or question mark.

Example 2.11. Mapping between Sequences Example 2.12. In-Line Nested M apping

? - Detroit Tigers
- Chicago cubs

- 2001-07-23

? [New York Yankees,
Atl anta Braves]
[2001-07-02, 2001-08-12,
2001- 08-14]

products purchased

- item Super Hoop
quantity: 1

- item Basket bal |
quantity: 4

- item Bi g Shoes
quantity: 1

2.3. Scalars

Scalar content can be written in block form using aliteral style (“| ") where all line breaks count. Or they can be written
with the folded style (“>") where each line break is folded to a space unless it ends an empty or a“more indented” line.

Example 2.13. In literals,
newlines are preserved

Example 2.14. In the plain scalar,
newlines become spaces

ASCI| Art

- |
VAARAYAR
U N B

Mark McGanire's
year was crippl ed
by a knee injury.

Example 2.15. Folded newlines preserved
for "moreindented” and blank lines

Example 2.16. Indentation deter mines scope

>
Sanmmy Sosa conpl et ed anot her
fine season with great stats.

63 Home Runs
0.288 Batting Average

VWhat a year!

name: Mark McGwm re
acconpli shnent: >

Mark set a mmjor |eague

home run record in 1998.
stats: |

65 Honme Runs

0.278 Batting Average

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

Y AML'sflow scalarsinclude the plain style (most examplesthusfar) and quoted styles. The double quoted style provides
escape sequences. The single quoted styleis useful when escaping is not needed. All flow scalars can span multiple lines;

line breaks are always folded.

Example 2.17. Quoted Scalars Example 2.18. Multi-line Flow Scalars
uni code: "Sosa did fine.\u263A" pl ai n:

control: "\bl1998\t 1999\t 2000\ n" Thi s unquot ed scal ar

hexesc: "\ x13\x10 is \r\n" spans nmany |ines.

single: '"Howdy!" he cried."' quoted: "So does this

quoted: ' # not a ''comment''.’ quoted scal ar.\n"

tie-fighter: "|\-*-/]|"

2.4. Tags

In YAML, untagged nodes are given an type depending on the application. The examples in this specification generaly
use the “seq” [http:/lyaml.org/type/seg.html], “map” [http:/lyaml.org/type/map.html] and
“st r” [http:/lyaml.org/type/str.html] typesfromthe Y AML tag repository [http://yaml.org/type/index.html]. A few examples
also use the “i nt " [http://yaml.org/type/int.html] and “f | oat " [http://yaml.org/type/float.html] types. The repository
includes additional types such as “nul | " [http://yaml.org/type/null.html], “bool " [http://yaml.org/type/bool.html],
“set ” [http://lyaml.org/type/set.html] and others.

Example 2.19. Integers Example 2.20. Floating Point

canoni cal : 12345 canoni cal : 1.23015e+3

deci mal : +12, 345 exponential: 12. 3015e+02

sexageci mal : 3:25:45 sexageci mal : 20: 30. 15

octal: 014 fixed: 1,230.15

hexadeci mal : 0xC negative infinity: -.inf
not a nunber: . NaN

Example 2.21. Miscellaneous Example 2.22. Timestamps
null: ~ canoni cal : 2001-12-15T02:59:43. 17
true: y i s0o8601: 2001-12-14t21:59:43. 10-05: 00
false: n spaced: 2001-12-14 21:59:43.10 -5
string: '12345 date: 2002-12-14

7

RenderX

http://yaml.org/type/seq.html
http://yaml.org/type/map.html
http://yaml.org/type/str.html
http://yaml.org/type/index.html
http://yaml.org/type/int.html
http://yaml.org/type/float.html
http://yaml.org/type/null.html
http://yaml.org/type/bool.html
http://yaml.org/type/set.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

Explicit typing isdenoted with atag using the exclamantion point (“!) symbol. Global tags are URIsand may be specified

in a shorthand form using a handle. Application-specific local tags may also be used.

Example 2.23. Various Explicit Tags

Example 2.24. Global Tags

not-date: !!str 2002-04-28
pi cture: !!binary |
ROl GODI hDAAMAI QAAP/ / 9/ X
17unp5WZnZg AAACE n515eXv
Pz7Y6Q ubDg4J+f n50Tk6enp

56enm eECcgggoBADs=

application specific tag:

The senantics of the tag
above may be different for
di fferent docunents.

I somet hing |

%AG ! tag:clarkevans. com 2002:
--- Ishape
Use the ! handle for presenting
tag: cl arkevans. com 2002: circl e
- lcircle
center: &RIGAN {x: 73, y: 129}
radius: 7
- lline
start: *CRIGAN
finish: { x: 89, y: 102 }
- 'l abel
start: *CRIGAN
col or: OxFFEEBB
text: Pretty vector draw ng.

Example 2.25. Unordered Sets

Example 2.26. Ordered M appings

sets are represented as a

mappi ng where each key is

associated with the enpty string
I'lset

? Mark McGnire

? Sammy Sosa

? Ken Giff

ordered maps are represented as
a sequence of nappings, with

each mappi ng havi ng one key

'l omap

- Mark McGwnire: 65

- Sammy Sosa: 63

- Ken Giffy: 58

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Preview

2.5.

Full Length Example

Below are two full-length examples of YAML. On the left is a sample invoice; on the right is a samplelog file.

Example 2.27. Invoice

Example 2.28. Log File

--- I<tag: cl arkevans. com 2002: i nvoi ce>
i nvoi ce: 34843

dat e 2001-01-23

bill-to: & d001

gi ven Chris

famly : Dumars

addr ess:

lines: |
458 Wl kmman Dr.
Suite #292
city Royal Qak
state M
post al 48046
ship-to: *ido01
product :

- sku : BL394D
quantity .4
description : Basket bal
price 450. 00

- sku . BL4438H
quantity 1
description : Super Hoop
price 2392. 00

tax : 251.42
total: 4443.52
coment s:

Late afternoon is best.

Backup contact is Nancy

Billsmer @ 338-4338.

Time: 2001-11-23 15:01:42 -5
User: ed
WMr ni ng:
This is an error
for the log file

message

Time: 2001-11-23 15:02:31 -5
User: ed
WMr ni ng:
A slightly different error
message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fat al :
Unknown vari abl e "bar"
St ack:
- file: Topd ass. py
line: 23
code: |
X = MoreQbj ect("345\n")
- file: Mored ass. py
line: 58
code: |-
foo = bar

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3. Processing YAML Information

YAML is both atext format and a method for presenting any data structure in this format. Therefore, this specification
definestwo concepts: aclass of dataobjectscaled Y AML representations, and asyntax for presenting Y AML representations
as a series of characters, called aYAML stream. A YAML processor is atool for converting information between these
complementary views. It is assumed that a Y AML processor doesits work on behalf of another module, called an applic-
ation. This chapter describesthe information structuresa’Y AML processor must provide to or obtain from the application.

YAML informationisused in two ways: for machine processing, and for human consumption. The challenge of reconciling
these two perspectivesis best donein three distinct trandation stages: representation, serialization, and presentation. Rep-
resentation addresses how Y AML views native data structures to achieve portability between programming environments.
Serialization concerns itself with turning a Y AML representation into a serial form, that is, a form with sequential access
constraints. Presentation deals with the formatting of a YAML serialization as a series of characters in a human-friendly
manner.

Figure 3.1. Processing Overview

Application 3 YAML
1 Dump >
/Represent\ /Serialize\ / Present \
Native Representation Serialization Presentation
(Data Structure) | (Node Graph) (Event Tree) (Character Stream)
opaque tags, anchors, styles, comments,
program mapping/sequence/scalar, aliases, directives, spacing,
data ! canonical string values key order formatted string values, ...
\Construct/ \ Compose / \ Parse /
< Load

A YAML processor need not expose the serialization or representation stages. It may translate directly between native data
structures and a character stream (dump and load in the diagram above). However, such a direct translation should take
place so that the native data structures are constructed only from information available in the representation.

3.1. Processes

Thissection detail sthe processes shown in the diagram above. NoteaY AML processor need not provide all these processes.
For example, aY AML library may provide only Y AML input ability, for loading configuration files, or only output ability,
for sending data to other applications.

3.1.1. Represent

YAML represents any native data structure using three node kinds: the sequence, the mapping and the scalar. By sequence
we mean an ordered series of entries, by mapping we mean an unordered association of unique keys to values, and by
scalar we mean any datum with opague structure presentable as a series of Unicode characters. Combined, these primitives
generate directed graph structures. These primitives were chosen because they are both powerful and familiar: the sequence
corresponds to a Perl array and a Python list, the mapping corresponds to a Perl hash table and a Python dictionary. The
scalar represents strings, integers, dates and other atomic data types.

10

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Each YAML node requires, in addition to its kind and content, a tag specifying its data type. Type specifiers are either
global URIs, or are local in scope to a single application. For example, an integer is represented in YAML with a scalar
plustheglobal tag“t ag: yaml . or g, 2002: i nt ”. Similarly, an invoice object, particular to a given organization, could
be represented as a mapping together with the local tag “! i nvoi ce”. Thissimple model can represent any data structure
independent of programming language.

3.1.2. Serialize

For sequential access mediums, such as an event callback API, a Y AML representation must be serialized to an ordered
tree. Since in a YAML representation, mapping keys are unordered and nodes may be referenced more than once (have
more than one incoming “arrow”), the serialization processis required to impose an ordering on the mapping keys and to
replace the second and subsequent references to a given node with place holders called aiases. YAML does not specify
how these serialization details are chosen. It is up to the Y AML processor to come up with human-friendly key order and
anchor names, possibly with the help of the application. The result of this process, aYAML seriaization tree, can then be
traversed to produce a series of event calls for one-pass processing of YAML data.

3.1.3. Present

The final output process is presenting the YAML serializations as a character stream in a human-friendly manner. To
maximize human readability, YAML offsers arich set of stylistic options which go far beyond the minimal functional
needs of simple data storage. Therefore the YAML processor is required to introduce various presentation details when
creating the stream, such as the choice of node styles, how to format content, the amount of indentation, which tag handles
to use, the node tags to leave unspecified, the set of directivesto provide and possibly even what commentsto add. While
some of this can be done with the help of of the application, in general this process should guided by the preferences of
the user.

3.1.4. Parse

Parsing istheinverse process of presentation, it takes astream of characters and produces a series of events. Parsing discards
all the details introduced in the presentation process, reporting only the serialization events. Parsing can fail fue to ill-
formed input.

3.1.5. Compose

Composing takes a series of serialization events and produces a representation graph. Composing discards al the serializ-
ation details introduced in the serialization process, producing only the representation graph. Composing can fail due to
any of several reasons, detailed below.

3.1.6. Construct

Thefinal input process is constructing native data structures from the Y AML representation. Construction must be based
only on the information available in the representation, and not on additional serialization or presentation details such as
comments, directives, mapping key order, node styles, content format, indentation levels etc. Construction can fail dueto
the unavailability of the required native data types.

3.2. Information Models

This section specifies the formal details of the results of the above processes. To maximize data portability between pro-
gramming languages and implementations, users of YAML should be mindful of the distinction between serialization or
presentation properties and those which are part of the Y AML representation. Thus, while imposing a order on mapping
keysis necessary for flattening Y AML representations to a sequential access medium, this serialization detail must not be

11

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

used to convey application level information. In asimilar manner, while indentation technique and a choice of anode style
are needed for the human readability, these presentation details are neither part of the YAML serialization nor the YAML
representation. By carefully separating properties needed for serialization and presentation, Y AML representations of ap-
plication information will be consistent and portabl e between various programming environments.

Figure 3.2. Information Models

[l il |
: Legend
YAML Representation
'+ + YAML Serialization : Ta
! ++ YAML Presentation 9 ++ Non-Specific Tag
""""""""""""""" Name <
Kind
Scalar Tag
++ Directive 1
Canonical Format
Name
Parameters *
Key
Node 1
<
! + Anchor * Key: Value Pair "
++ Style, Spacing, €—
Line Wrapping... 1
Ordered Value Unordered
Content / + Ordered
Content
" Sequence Node Scalar Node Mapping Node 1
T
Canonical
/ ++ Formatted
Content
+ Alias Node ++ Comment
String

3.2.1. Representation Graph

Y AML'srepresentation of native dataisarooted, connected, directed graph of tagged nodes. By “ directed graph” we mean
a set of nodes and directed edges (“arrows’), where each edge connects one node to another (see a formal definition
[http://www.nist.gov/dadsyHTM L/directedGraph.html]). All the nodes must be reachable from the root node via such edges.
Note that the Y AML graph may include cycles, and a node may have more than one incoming edge.

Nodesthat are defined in terms of other nodes are collections and nodes that are independent of any other nodes are scalars.
YAML supports two kinds of collection nodes, sequences and mappings. Mapping nodes are somewhat tricky because
their keys are unordered and must be unique.

12

http://www.nist.gov/dads/HTML/directedGraph.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.3. Representation M odel

Tag

Name
Kind
Scalar Tag

Canonical Format

Key
Node 1
<
! * Key: Value Pair <T
<«
1
Ordered Value Unordered
Content Content
" Sequence Node Scalar Node Mapping Node
Canonical
Content
String

3.2.1.1. Nodes

YAML nodes have content of one of three kinds: scalar, sequence, or mapping. In addition, each node has a tag which
serves to restrict the set of possible values which the node's content can have.

Scalar The content of a scalar node is an opagque datum that can be presented as a series of zero or more Unicode
characters.

Sequence The content of a sequence node is an ordered series of zero or more nodes. In particular, a sequence may
contain the same node more than once or it could even contain itself (directly or indirectly).

Mapping The content of a mapping nodeis an unordered set of key: value node pairs, with the restriction that each of
the keys is unique. YAML places no further restrictions on the nodes. In particular, keys may be arbitrary
nodes, the same node may be used asthe value of several key: value pairs, and amapping could even contain
itself asakey or avalue (directly or indirectly).

When appropriate, it is convenient to consider sequences and mappings together, as collections. In this view, sequences
are treated as mappings with integer keys starting at zero. Having a unified collections view for sequences and mappings
is helpful both for creating practical Y AML tools and APIs and for theoretical analysis.

3.2.1.2. Tags

Y AML represents type information of native data structures with asimpleidentifier, called atag. Global tagsare are URIs
[http://www.ietf.org/rfc/rfc2396.txt] and hence globally unique across all applications. The “t ag”: URI scheme

13

http://www.ietf.org/rfc/rfc2396.txt
http://www.taguri.org
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

[http://www.taguri.org] (mirror [http://yaml.org/spec/taguri.txt]) is recommended for all global YAML tags. In contrast,
local tags are specific to asingle application. Local tags start with “! ”, are not URIs and are not expected to be globally
unique. YAML provides a“TAG’ directive to make tag notation less verbose; it also offers easy migration from local to
global tags. To ensure this, local tags are restricted to the URI character set and use URI character escaping.

YAML does not mandate any special relationship between different tags that begin with the same substring. Tags ending
with URI fragments (containing “#") are no exception; tags that share the same base URI but differ in their fragment part
are considered to be different, independent tags. By convention, fragments are used to identify different “variants’ of a
tag, while“/ ” is used to define nested tag “namespace” hierarchies. However, this is merely a convention, and each tag

may employ its own rules. For example, Perl tagsmay use”: : ” to express namespace hierarchies, Javatags may use“. ”,
etc.

Y AML tags are used to associate meta information with each node. In particular, each tag must specify the expected node
kind (scalar, sequence, or mapping). Scalar tags must al so provide mechanism for converting formatted content to acanon-
ical form for supporting equality testing. Furthermore, atag may provide additional information such as the set of allowed
content values for validation, a mechanism for tag resolution, or any other data that is applicable to all of the tag's nodes.

3.2.1.3. Nodes Comparison

Since Y AML mappings require key uniqueness, representations must include amechanism for testing the equality of nodes.
Thisisnon-trivial since YAML allows various waysto format a given scalar content. For example, the integer eleven can
be written as“013” (octal) or “OxB” (hexadecimal). If both forms are used as keys in the same mapping, only aYAML
processor which recognizes integer formats would correctly flag the duplicate key as an error.

Canonical Form YAML supportsthe need for scalar equality by requiring that every scalar tag must specify amechanism
to producing the canonical form of any formatted content. This form is a Unicode character string
which presents the content and can be used for equality testing. While this requirement is stronger
than awell defined equality operator, it has other uses, such as the production of digital signatures.

Equality Two nodes must have the same tag and content to be equal. Since each tag appliesto exactly onekind,
thisimplies that the two nodes must have the same kind to be equal. Two scalars are equal only when
their tags and canonical forms are equal character-by-character. Equality of collectionsis defined re-
cursively. Two sequences are equal only when they have the same tag and length, and each node in
one sequenceis equal to the corresponding node in the other sequence. Two mappings are equal only
when they have the same tag and an equal set of keys, and each key in this set is associated with equal
values in both mappings.

| dentity Two nodes are identical only when they represent the same native data structure. Typically, this cor-
responds to a single memory address. Identity should not be confused with equality; two equal hodes
need not have the same identity. A YAML processor may treat equal scalars asif they were identical.
In contrast, the separate identity of two distinct but equal collections must be preserved.

3.2.2. Serialization Tree

To expressaY AML representation using a serial API, it necessary to impose an order on mapping keys and employ alias
nodes to indicate a subsegquent occurrence of a previously encountered node. The result of this processis a serialization
tree, where each node has an ordered set of children. Thistree can be traversed for aserial event based API. Construction
of native structures from the serial interface should not use key order or anchors for the preservation of important data.

14

http://yaml.org/spec/taguri.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.4. Serialization M odel

E YAML Representation E
+ YAML Serialization

Tag

Name
Kind
Scalar Tag

Canonical Format

*

Key
Node 1
<
! + Anchor * Key: Value Pair <T
<«
1
Ordered Value + Ordered
Content Content
" Sequence Node Scalar Node Mapping Node
Canonical
Content
+ Alias Node
String

3.2.2.1. Keys Order

In the representation model, mapping keys do not have an order. To serializeamapping, it isnecessary toimpose an ordering
onitskeys. Thisorder isaseriaization detail and should not be used when composing the representation graph (and hence
for the preservation of important data). In every case where node order is significant, a sequence must be used. For example,
an ordered mapping can be represented as a sequence of mappings, where each mapping isasingle key: value pair. YAML
provides convenient compact notation for this case.

3.2.2.2. Anchors and Aliases

In the representation graph, anode may appear in more than one collection. When serializing such data, the first occurrence
of the node is identified by an anchor and each subsequent occurrence is serialized as an alias node which refers back to
this anchor. Otherwise, anchor names are a serialization detail and are discarded once composing is completed. When
composing a representation graph from serialized events, an alias node refers to the most recent node in the seriaization
having the specified anchor. Therefore, anchors need not be unique within a seriaization. In addition, an anchor need not
have an dlias node referring to it. It is therefore possible to provide an anchor for all nodesin serialization.

3.2.3. Presentation Stream

A YAML presentation is astream of Unicode characters making use of of styles, formats, comments, directives and other
presentation detailsto present a Y AML serialization in a human readable way. Although aY AML processor may provide
these details when parsing, they should not be reflected in the resulting seriaization. YAML alows severa seriaizations
to be contained in the same Y AML character stream as a series of documents separated by document boundary markers.

15

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Documents appearing in the same stream are independent; that is, a node must not appear in more than one serialization
tree or representation graph.

Figure 3.5. Presentation M odel

[l il |

: Legend

E YAML Representation E

+ + YAML Serialization : Ta

1 ++ YAML Presentation | 9 ++ Non-Specific Tag

""""""""""""""" Name <

Kind
++ Directive 1
Name
Parameters *
Key
Node 1
<
< + Anchor * Key: Value Pair 47*
++ Style, Spacing, [€—
Line Wrapping.. 1
Ordered Value + Ordered
Content Content
" Sequence Node Scalar Node Mapping Node
++ Formatted
Content
+ Alias Node ++ Comment
String

3.2.3.1. Node Styles

Each node is presented in some style, depending on its kind. The node style is a presentation detail and is not reflected in
the serialization tree or representation graph. There are two groups of styles, block and flow. Block styles use indentation
to denote nesting and scope within the document. In contrast, flow styles rely on explicit indicators to denote nesting and
scope.

YAML provides arich set of scalar styles. Block scalar styles include the literal style and the folded style; flow scalar
styles include the plain style and two quoted styles, the single quoted style and the double quoted style. These styles offer
arange of trade-offs between expressive power and readability.

Normally, the content of block collections begins on the next line. In most cases, YAML also allows block collections to
start in-line for more compact notation when nesting block sequences and block mappingsinside each other. When nesting
flow collections, a flow mapping with a single key: value pair may be specified directly inside a flow sequence, allowing
for acompact “ordered mapping” notation.

16

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.6. Kind/Style Combinations

Kind
Collection
Scalar Sequence Mapping

(o) (amge) | Esem

Flow

3.2.3.2. Scalar Formats

YAML alows scalar content to be presented in several formats. For example, the boolean “t r ue” might also be written
as “yes”. Tags must specify a mechanism for converting any formatted scalar content to a canonical form for use in
equality testing. Like node style, the format is a presentation detail and is not reflected in the serialization tree and repres-
entation graph.

3.2.3.3. Comments

Comments are a presentation detail and must not have any effect on the serialization tree or representation graph. In partic-
ular, comments are not associated with a particular node. The usual purpose of acomment isto communicate between the
human maintainers of afile. A typical example is comments in a configuration file. Comments may not appear inside
scalars, but may be interleaved with such scalarsinside collections.

3.2.3.4. Directives

Each document may be associated with a set of directives. A directive has aname and an optional sequence of parameters.
Directives are instructions to the YAML processor, and like all other presentation details are not reflected in the YAML
serialization tree or representation graph. This version of YAML defines atwo directives, “YAM.” and “TAG'. All other
directives are reserved for future versions of YAML.

3.3. Loading Failure Points

The process of |oading native data structuresfroma’Y AML stream has several potential failure points. The character stream
may beill-formed, aliases may be unidentified, unspecified tags may be unresolvable, tags may be unrecognized, the content
may beinvalid, and a native type may be unavailable. Each of these failures results with an incomplete loading.

A partial representation need not resolve the tag of each node, and the canonical form of scalar content need not be
available. This weaker representation is useful for cases of incomplete knowledge of the types used in the document. In

17

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

contrast, acompl ete representation specifiesthe tag of each node, and providesthe canonical form of scalar content, allowing
for equality testing. A complete representation is required in order to construct native data structures.

Figure 3.7. Loading Failure Points

A
VAY
< »
| {)
Parse é
l Well Formed I||-F9rme.d. No
and Identified or Unidentified Representation
83
Compose :
Resolved Unresolved Partial .
Representation
?
Scalar
RECOQNiZ_Ed Unrecognized
and Valid or Invalid
v
* ? Collection
Available Unavailable Complete.
Representation
Construct

Construct
Native Data

3.3.1. Well-Formed and Identified

A well-formed character stream must match the productions specified in the next chapter. Successful loading a so requires
that each alias shall refer to a previous node identified by the anchor. A Y AML processor should reject ill-formed streams
and unidentified aliases. A Y AML processor may recover from syntax errors, possibly by ignoring certain parts of theinput,
but it must provide a mechanism for reporting such errors.

3.3.2. Resolved

It is not required that all the tags of the complete representation be explicitly specified in the character stream. During
parsing, hodes that omit the tag are given anon-specific tag: “ ?” for plain scalarsand “ ! ” for all other nodes. These non-
specific tags must be resolved to a specific tag (either aloca tag or aglobal tag) for acomplete representation to be composed.

Resolving the tag of a node must only depend on the following three parameters: the non-specific tag of the node, the path
leading from the root node to the node, and the content (and hence the kind) of the node. In particular, resolution must not
consider presentation details such as comments, indentation and node style. Also, resolution must not consider the content
of any other node, except for the content of the key nodes directly along the path leading from the root node to the resolved
node. In particular, resolution must not consider the content of a sibling node in a collection or the content of the value
node associated with aresolved key node.

18

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Tag resolution is specific to the application, henceaY AML processor should provide amechanism allowing the application
to specify the tag resolution rules. It is recommended that nodes having the “! ” non-specific tag should be resolved as
“t ag: yam . or g, 2002: seq”, “t ag: yam . or g, 2002: map” or “t ag: yam . or g, 2002: st r” depending on
the node's kind. This convention allows the author of aY AML character stream to exert some measure of control over the
tag resolution process. By explicitly specifying aplain scalar hasthe ! ” non-specific tag, the nodeis resolved as a string,
asif it wasquoted or written in ablock style. Note, however, that each application may override thisbehavior. For example,
an application may automatically detect the type of programming language used in source code presented as a non-plain
scalar and resolve it accordingly.

When a node has more than one occurence (using an anchor and alias nodes), tag resolution must depend only on the path
to the first occurence of the node. Typically, the path leading to a node is sufficient to determine its specific tag. In cases
where the path does not imply asingle specific tag, the resolution also needs to consider the node content to select amongst
the set of possibletags. Thus, plain scalars may be matched against a set of regular expressions to provide automatic resol -
ution of integers, floats, timestamps and similar types. Similarly, the content of mapping nodes may be matched against
sets of expected keys to automatically resolve points, complex numbers and similar types.

The combined effect of these rulesisto ensure that tag resolution can be performed as soon as anode is first encountered
in the stream, typically beforeits content is parsed. Also, tag resolution only requires refering to arelatively small number
of previously parsed nodes. Thus, tag resolution in one-pass processors is both possible and practical.

If a document contains unresolved tags, the YAML processor is unable to compose a complete representation graph. In
such acase, the YAML processor may compose an partial representation, based on each node's kind and allowing for non-
specific tags.

3.3.3. Recognized and Valid

To bevalid, anode must have atag which isrecognized by the’ Y AML processor and its content must satisfy the constraints
imposed by this tag. If a document contains a scalar node with an unrecognized tag or invalid content, only a partial rep-
resentation may be composed. In contrast, aY AML processor can always compose a compl ete representation for an unre-
cognized or an invalid collection, since collection equality does not depend upon knowledge of the collection's data type.
However, such a complete representation can not be used to construct a native data structure.

3.3.4. Available

In agiven processing environment, there need not be an available native type corresponding to agiven tag. If anode'stag
isunavailable, a Y AML processor will not be able to construct a native data structure for it. In this case, a compl ete rep-
resentation may still be composed, and an application may wish to use this representation directly.

19

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Syntax

Following are the BNF productions defining the syntax of Y AML character streams. To make this chapter easier to follow,
production names use Hungarian-style notation:

e- A production matching no characters.

c- A production matching one or more characters starting and ending with aspecial (non-space) character.
b- A production matching asingle line break.

nb- A production matching one or more characters starting and ending with a non-break character.

S- A production matching one or more characters starting and ending with a space character.

ns- A production matching one or more characters starting and ending with a non-space character.

X- Y- A production matching a sequence of one or more characters, starting with an X- character and ending

withaY- character.
| - A production matching one or more lines (shorthand for s- b-).

X+, X- Y+ A production as above, with the additional property that the indentation level used is greater than the
specified n parameter.

Productions are generally introduced in a “bottom-up” order; basic productions are specified before the more complex
productions using them. Examples accompanying the productions list display sample YAML text side-by-side with equi-
valent YAML text using only flow collections and double quoted scalars. For improved readability, the equivalent YAML
text usesthe“! ! seq”,“! map” and“! ! st r ” shorthandsinstead of theverbatim*“! <t ag: yam . or g, 2002: seq>",
“I <tag: yam . org, 2002: map>" and “! <t ag: yam . or g, 2002: st r >” forms. These types are used to resolve
all untagged nodes, except for afew examplesthat usethe! i nt " and“! ! f | oat ” types.

4.1. Characters
4.1.1. Character Set

Y AML streams use the printable subset of the Unicode character set. Oninput, aY AML processor must accept all printable
ASCII characters, the space, tab, line break, and all Unicode characters beyond #x9F. On output, aY AML processor must
only produce these acceptable characters, and should also escape all non-printable Unicode characters. The allowed
character range explicitly excludesthe surrogate block #x D800- #x DFFF, DEL #x 7F, the CO control block #x0- #x 1F,
the C1 control block #x80- #x 9F, #x FFFE and #x FFFF. Any such characters must be presented using escape sequences.

[1] c-printable ::= #x9 | #xA | #xD | [#x20-#x7E] /* 8 bit */
| #x85 | [#xA0-#xD7FF] | [#xEO00-#xFFFD] /* 16 bit */
| [#x10000- #x10FFFF] /* 32 bit */

20

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

4.1.2. Character Encoding

All characters mentioned in this specification are Unicode code points. Each such code point is written as one or more
octets depending on the character encoding used. Note that in UTF-16, characters above #x FFFF are written as four
octets, using asurrogate pair. A Y AML processor must support the UTF-16 and UTF-8 character encodings. If acharacter
stream does not begin with abyte order mark (#FEFF), the character encoding shall be UTF-8. Otherwiseit shall be either
UTF-8, UTF-16 LE or UTF-16 BE asindicated by the byte order mark. On output, it is recommended that a byte order
mark should only be emitted for UTF-16 character encodings. Note that the UTF-32 encoding is explicitly not supported.
For more information about the byte order mark and the Unicode character encoding schemes see the Unicode

FAQ [http://www.unicode.org/unicode/fag/utf_bom.html].

[2] c-byte-order-mark ::= #xXFEFF

In the examples, byte order mark characters are displayed as“ < .

Example 4.1. Byte Order Mark

[~ J# Conment only.

This stream contai ns no

Legend:
c-byte-order - nark]

Example 4.2. Invalid Byte Order Mark

docunents, only coments.

Invalid use of BOM

E#insidea

docunent.

ERROR:

A must not appear

i nsi de a docunent.

4.1.3. Indicator Characters

Indicators are characters that have special semantics used to describe the structure and content of a Y AML document.

e A “-" denotes a blocks equence entry.
[3] c-sequence-entry ::= “-"
e A “?” denotes a mapping key.

[4] c-mapping-key ::= “?"

e A “:” denotes amapping value.

[5] c-mapping-value ::= “:"

21

http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.3. Block StructureIndicators

=1

sequence: :

D one -

[-] two

meppi ng;: !
'7 sky

=

.:} bl ue

Legend:

e A", 7 endsaflow collection entry.

[6] c-collect-entry ::= ",

e A[” startsaflow sequence.
[7] c-sequence-start ::= “["
« A*“]” endsaflow sequence.
[8] c-sequence-end ::= “]"
« A*{" startsaflow mapping.
[9] c-mapping-start ::= “{”
A *“}" endsaflow mapping.

[10] c-mapping-end ::= “}”

%rAML 1.1
'map {

? !lstr "sequence"
Ilseq [
str

1.

? Ilstr "mapping"
'map {

? Ilstr "sky" : llstr
? Illstr "sea" : !lstr

one", !lIstr "two

" bl ueu ,
"green”

22

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.4. Flow Collection Indicators

sequence: one[,:] tvvo[,_] 1]

r=i

mappi ng: { sky: bl ue, | sea:

green

3

Legend:
[C-Ssequence-start] [c-sequence- end

e A*“ #" denotes acomment.

[11] c-coment ::= “#”

Example 4.5. Comment Indicator

%rAML 1.1
'map {
? !lstr "sequence"
Ilseq [
II'str "one", Ilstr "two"
1.
? Ilstr "mapping"
'map {
? Ilstr "sky" I'lstr "blue",
? llstr "sea" II'str "green"
}
}

Coment only.

Legend:
C-conmen

e A “& denotes anode's anchor property.

[12] c-anchor ::= “&

e A “*” denotes an aias node.
[13] c-alias ::= “*"
e A"l denotes anode'stag.

[14] c-tag ::

Example 4.6. Node Property Indicators

This stream contai ns no
docunents,

only conmments.

[
. |
anchore'q.._. ' ocal anchor val ue
alias: *:anchor

QrAML 1.1
'map {
? !lstr "anchored"
Il ocal &A1l "val ue",
? !lstr "alias"
*Al,
}

23

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

 A*| " denotesalitera block scalar.
[15] c-literal ::=

* A “>" denotes afolded block scalar.
[16] c-folded ::= “>"

Example 4.7. Block Scalar Indicators

literal: [[] UYAML 1.1
t ext
fol ded: > Himep o _
text ? Ilstr "literal”
Ilstr "text\n",
' ? Ilstr "fol ded”
Legend: Ilstr "text\n",
}
c-foldea:
e A" 7 surrounds asingle quoted flow scalar.
[17] c-single-quote ::=*“""
e A *“"” surrounds adouble quoted flow scalar.
[18] c-doubl e-quote ::= “""
Example 4.8. Quoted Scalar Indicators
single: [Jrext['] 9(AML 1.1
double: "texti":
map {
? Ilstr "double"
Legend: Ilstr "text",
€-si ngl e- quot €] 2 Ilstr "single"
C-doubl e-quot e Ilstr "text"
}

« A “9% denotesadirectiveline.

[19] c-directive ::= “9%

24

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.9. Directive Indicator

YAI\/L 1.1 OYAML 1.1
--- text

I'lstr "text"
Legend:

C-directive

e The“@ and“" " arereserved for future use.

[20] c-reserved :: = “@ | W~y

Example 4.10. Invalid use of Reserved Indicators

commercial -at: [@text ERROR:
grave-accent: t ext |[Reserved indicators] can't
start a plain scalar.

* Any indicator character:

[21] C_I ndl Cat or ::= w_n I “ ?u I u: ” I u’ ” I u[u I u] ” I u{u I
I “ #u I “ &u I “ f ” I “ | ” I “ I ” I “n I waron I
I “ % I “ @ I Wy

4.1.4. Line Break Characters

The Unicode standard defines the following line break characters:

[22] b-line-feed ::= #xA /*LF*/

[23] b-carriage-return ::= #xD /*CR*/

[24] b-next-line ::= #x85 /*NEL*/

[25] b-line-separator ::= #x2028 /*LS*/

[26] b- par agraph-separator ::= #x2029 /*PS*/

A YAML processor must accept all the possible Unicode line break characters.

[27] b-char ::= b-line-feed | b-carriage-return | b-next-line
| b-line-separator | b-paragraph-separator

Line breaks can be grouped into two categories. Specific line breaks have well-defined semantics for breaking text into

lines and paragraphs, and must be preserved by the YAML processor inside scalar content.

[28] b-specific ::= b-line-separator | b-paragraph-separator

25

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Generic line breaks do not carry a meaning beyond “ending aline”. Unlike specific line breaks, there are several widely
used forms for generic line breaks.

[29] b-generic ::= (b-carriage-return b-line-feed) /* DOS, Wndows */
| b-carriage-return /* Macintosh */
| b-line-feed /[* UNI X */
| b-next-line /* Uni code */

Generic line breaksinside scalar content must be normalized by the Y AML processor. Each such line break must be parsed
into a single line feed character. The original line break form is a presentation detail and must not be used to convey
content information.

[30] b-as-line-feed ::= b-generic
[31] b-normalized ::= b-as-line-feed | b-specific

Normalization does not apply to ignored (escaped or chomped) generic line breaks.

[32] b-ignored-generic ::= b-generic

Outside scalar content, YAML allows any line break to be used to terminate lines.

[33] b-ignored-any ::= b-generic | b-specific

Onoutput, aYAML processor isfreeto present line breaks using whatever convention is most appropriate, though specific
line breaks must be preserved in scalar content. These rules are compatible with Unicode's newline guidelines

[http://www.unicode.org/unicode/reports/tr13/].

In the examples, line break characters are displayed as follows: “ 1" or no glyph for a generic line break, “[I" for aline
separator and “[” for a paragraph separator.

Example 4.11. Line Break Characters

| 9%rAML 1.1
Ceneric line break (no glyph) --- Ilstr
Generic line break (gl yphed) "Gener@ c | | ne break (no glyph)\n\
Li ne separat or:Lj; ngerl c line break (glyphed)\n\
e ey Li ne separat or\u2028\
Paragraph separator: Par agr aph separ at or\ u2029"

Legend:
b-Tine-separator:

4.1.5. Miscellaneous Characters

The YAML syntax productions make use of the following character range definitions:
* A non-bresk character:

[34] nb-char ::= c-printable - b-char

26

http://www.unicode.org/unicode/reports/tr13/
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

* Anignored space character outside scalar content. Such spaces are used for indentation and separation between tokens.
To maintain portability, tab characters must not be used in these cases, since different systems treat tabs differently.
Note that most modern editors may be configured so that pressing the tab key resultsin the insertion of an appropriate

number of spaces.

[35] s-ignored-space ::= #x20 /*SP*/

Example 4.12. Invalid Use of Tabs

Tabs do's and don'ts:

comment :
quoted: "Quoted [
bl ock: |

void main() {

[=Jprintf("Hello, worldi\n");
}

............

ERROR:

Tabs appear inside
comrents and quoted or
bl ock scal ar content.

el sewhere, such as
in indentation and
separati on spaces.

» A white space character in quoted or block scalar content:

[36] s-white ::= #x9 /*TAB*/ | #x20 /*SP*/

In the examples, tab characters are displayed as the glyph “

for clarity.

Example 4.13. Tabs and Spaces

-". Space characters are sometimes displayed as the glyph

i IText - containing- i
- both: space - ‘and|-]
abchar acters"

Legend:
#%x20 (SP):

e Anignored white space character inside scalar content:

[37] s-ignored-white ::= s-white

e A non space (and non-break) character:

[38] ns-char ::= nb-char - s-white

e A decimal digit for numbers:

[39] ns-dec-digit ::= [#x30-#x39] /*0-9*/

%rAML 1.1

--- Ilstr

"Text - cont ai ni ng-\
bot h- space- and- \
tab-characters"”

27

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

* A hexadecimal digit for escape sequences:

[40] ns-hex-digit ::= ns-dec-digit | [#x41l-#x46] /*A-F*/ | [#x61-#x66] /[*a-f*/
* AnASCII letter (alphabetic) character:

[41] ns-ascii-letter ::= [#x41l-#x5A] /*A-Z*/ | [#x61-#x7A] [*a-z*/

* A word (alphanumeric) character for identifiers:

[42] ns-word-char ::= ns-dec-digit | ns-ascii-letter | “-"

* A URI character for tags, as specified in RFC2396 [http://www.ietf.org/rfc/rfc2396.txt] with the addition of the “[”
and “] " for presenting I Pv6 addresses as proposed in RFC2732 [http://www.ietf.org/rfc/rfc2732.txt]. A limited form
of 8-bit escapingisavailableusingthe” % character. By convention, URIscontaining 16 and 32 bit Unicode characters
are encoded in UTF-8, and then each octet is written as a separate character.

[43] ns-uri-char ::= ns-word-char | “% ns-hex-digit ns-hex-digit
| " ; ” | " / ” | " ?)1 | " : ” | " @ | " &)1 | " :)1 | " +)1 | " $)1 | " , ”
| “ _)1 | “ i ” | " ! ” | " ~)1 | g n | o | " (” | ") ” | " [” | "] ”

e The"!” character is used to indicate the end of a named tag handle; hence its use in tag shorthands is restricted.

[44] ns-tag-char ::= ns-uri-char - “!”

4.1.6. Escape Sequences

All non-printable characters must be presented as escape sequences. Each escape sequences must be parsed into the ap-
propriate Unicode character. The original escape sequence form is a presentation detail and must not be used to convey
content information. Y AML escape sequences use the“\ ” notation common to most modern computer languages. Note
that escape sequences are only interpreted in double quoted scalars. In al other scalar styles, the “\ ” character has no
special meaning and non-printable characters are not available.

[45] c-escape ::= “\"

Y AML escape sequences are a superset of C's escape sequences:
e Escaped ASCII null (#x0) character:

[46] ns-esc-null ::= “\" “0Q"

e Escaped ASCII bell (#x7) character:

[47] ns-esc-bell ::=*“\" “a&”

» Escaped ASCII backspace (#x8) character:

[48] ns-esc-backspace ::= “\" “Db”

e Escaped ASCII horizontal tab (#x9) character:

[49] ns-esc-horizontal-tab ::= “\" “t” | “\" #x9

28

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

» Escaped ASCII linefeed (#xA) character:
[50] ns-esc-line-feed ::= “\" “n”

» Escaped ASCII vertical tab (#xB) character:

[51] ns-esc-vertical-tab ::= “\" “v

o Escaped ASCII form feed (#x C) character:

[52] ns-esc-formfeed ::= “\" “f”

» Escaped ASCII carriage return (#x D) character:

[53] ns-esc-carriage-return ::= “\" “r”

» Escaped ASCII escape (#x 1B) character:

[54] ns-esc-escape ::= “\" “¢”

» Escaped ASCII space (#x20) character:

[55] ns-esc-space ::= “\" #x20

e Escaped ASCII double quote (“" "):

[56] ns-esc-doubl e-quote ::= “\"

» Escaped ASCII back slash (“\ ”):

[57] ns-esc-backslash ::= “\" “\”

» Escaped Unicode next line (#x85) character:
[58] ns-esc-next-line ::= “\" “N

» Escaped Unicode non-breaking space (#xAQ) character:

[59] ns-esc-non-breaking-space ::= “\" * "

» Escaped Unicode line separator (#x2028) character:

[60] ns-esc-line-separator ::= “\" “L”

» Escaped Unicode paragraph separator (#x2029) character:
[61] ns-esc-paragraph-separator ::= “\" “P"

« Escaped 8-hit Unicode character:

[62] ns-esc-8-bit ::=“\" “x" (ns-hex-digit x 2)

29

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

» Escaped 16-bit Unicode character:
[63] ns-esc-16-bit ::= “\" *

e Escaped 32-bit Unicode character:

[64] ns-esc-32-bit ::= “\" “UW
* Any escaped character:
[65] ns-esc-char = ns-esc-null |

ns-esc-verti cal

ns-esc-8-hit |

Example 4.14. Escaped Characters

ns-esc-bel | |
ns-esc-horizontal -tab |

ns-esc-carriage-return |
ns-esc- doubl e- quote |
ns-esc-next-line |
ns-esc-1line-separator |

u” (ns-hex-digit x 4)

(ns-hex-digit x 8)

ns-esc- backspace
ns-esc-1line-feed
ns-esc-formfeed
ns-esc- escape |
ns-esc- backsl ash
ns- esc- non- br eaki ng- space

ns- esc- par agr aph- separ at or
ns-esc-32-bit

-tab |
ns-esc- space

ns-esc-16-bit |

T
c
=}
=3
—_
=
/
/

(V]
--

\

(‘D

—|| —|| —
>
—|| —
= o
—|| —
Z||~

—|| —
i <
—|| —
'UO

OYAML 1.1

"Fun with \ x5C

\x22 \x07 \x08 \x1B \0C
\ XxOA \ xOD \ x09 \ x0B \ x00

[\ x41] |\uOO41| [\ U00000041]" \x20 \XAO \x85 \u2028 \u2029
AAA
Legend:
NS- esc- char
Example 4.15. Invalid Escaped Characters
Bad escapes: ERROR:

. is an |nval i d escaped character.
- q and are invalid hex digits.

4.2. Syntax Primitives

4.2.1. Production Parameters

AsYAML'ssyntax isdesigned for maximal readability, it makes heavy use of the context that each syntactical entity appears
in. For notational compactness, this is expressed using parameterized BNF productions. The set of parameters and the

range of allowed values depend on the specific production. The full list of possible parameters and their valuesis:

Indentation: n or m

Since the character stream depends upon indentation level to delineate blocks, many productions
are parameterized by it. In some cases, thenotations“pr oduct i on(<n) ”,“pr oduct i on(<n)”

RenderX

30

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Context: ¢

(Scalar) Style: s

(Block) Chomping: t

and “pr oduct i on(>n) " are used; these are shorthands for “pr oduct i on(m ” for some spe-
cific mwhere 0 < m<n, 0 < m< n and m> n, respectively.

YAML supports two groups of contexts, distinguishing between block styles and flow styles. In
the block styles, indentation is used to delineate structure. Due to the fact that the “- " character
denoting a block sequence entry is perceived as an indentation character, some productions distin-
guish between the block-in context (inside a block sequence) and the block-out context (outside
one). In the flow styles, explicit indicators are used to delineate structure. As plain scalars have no
such indicators, they are the most context sensitive, distinguishing between being nested inside a
flow collection (flow-in context) or being outside one (flow-out context). YAML also provides a
terse and intuitive syntax for smple keys. Plain scalarsin this (flow-key) context are the most re-
stricted, for readability and implementation reasons.

Scalar content may be presented in one of five styles: the plain, double quoted and single quoted
flow styles, and the literal and folded block styles.

Block scalars offer three possible mechanismsfor chomping any trailing line breaks: strip, clip and
keep.

4.2.2. Indentation Spaces

InaYAML character stream, structureis often determined from indentation, where indentation is defined as aline break
character (or the start of the stream) followed by zero or more space characters. Note that indentation must not contain
any tab characters. The amount of indentation isapresentation detail used exclusively to delineate structure and is otherwise
ignored. In particular, indentation characters must never be considered part of a node's content information.

[66] s-indent(n) ::= s-ignored-space X n

Example 4.16. Indentation Spaces

Not i ndented:
[- By one space: |

[JFlow style: [
Ty e,
[A'so by two,

:ESti Il by two

[T

Legend:

are neither
content nor
i ndentation.

In general, a node must be indented further than its parent node. All sibling nodes must use the exact same indentation
level, however the content of each sibling node may be further indented independently. The “- ", “?” and “: ” characters

UrAML 1.1
i~ .- # neither content nor indentation. || 7~
? Ilstr "Not indented"
'map {
? I'l'str "By one space"

Ilstr "By four\n spaces\n",
? 1llstr "Flow style"
_ Ilseq [
Leadi ng spaces lIstr "By two"
#in flow style I'lstr "Still by two",

Ilstr "Again by two",
]

31

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

used to denote block collection entries are perceived by people to be part of the indentation. Hence the indentation rules
are slightly more flexible when dealing with these indicators. First, a block sequence need not be indented relative to its
parent node, unless that nodeis also ablock sequence. Second, compact in-line notations allow anested collection to begin
immediately following theindicator (wheretheindicator iscounted as part of the indentation). Thisprovidesfor anintuitive
collection nesting syntax.

4.2.3. Comments

An explicit comment isismarked by a“#” indicator. Comments are a presentation detail and must have no effect on the
serialization tree (and hence the representation graph).

[67] c-nb-coment-text ::= “#" nb-char*

Comments always span to the end of the line.

[68] c-b-comment ::= c-nb-coment-text? b-ignored-any

Outside scalar content, comments may appear on aline of their own, independent of the indentation level. Note that tab
characters must not be used and that empty lines outside scalar content are taken to be (empty) comment lines.

[69] | -comment ::= s-ignored-space* c-b-conment

Example 4.17. Comment Lines

This stream contains no
docunents, only comments.

Legend:

When acomment follows another syntax element, it must be separated from it by space characters. Like the comment itself,
such characters are not considered part of the content information.

[70] s-b-conment ::= (s-ignored-space+ c-nb-coment-text)?
b-i gnor ed- any

Example 4.18. Comments EndingaLine

...............................

key: - ... _Comment]i S AML 11
val ue | : .
i map {
? Ilstr "key"
g : Ilstr "val ue"
[€-nb- comment - T ext] §-b-conment: }

In most cases, when aline may end with acomment, YAML alowsit to be followed by additional comment lines.

c-b-coment | -conment *
s-b-comrent | -conment *

[71] c-1-coments ::
[72] s-1-coments ::

32

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.19. Multi-Line Comments

key: [# Corment [] %(AML 1.1
. map {
? Ilstr "key"
I'lstr "val ue"

4.2.4. Separation Spaces

Outside scalar content, Y AML uses space charactersfor separation between tokens. Note that separation must not contain
tab characters. Seperation spaces are a presentation detail used exclusively to delineate structure and are otherwise ignored;
in particular, such characters must never be considered part of a node's content information.

[73] s-separate(n,c) ::=c = block-out O s-separate-lines(n)
c = block-in 0O s-separate-lines(n)
c = flowout 0O s-separate-lines(n)
c =flowin O s-separate-lines(n)
c = flowkey 0O s-separate-spaces

* YAML usually alows separation spaces to include a comment ending the line and additional comment lines. Note
that the token following the separation comment lines must be properly indented, even though thereisno such restriction
on the separation comment lines themselves.

[74] s-separate-lines(n) ::= s-i gnor ed- space+
| (s-1-coments s-indent(n) s-ignored-space*)

* Inside simple keys, however, separation spaces are confined to the current line.

[75] s-separate-spaces ::= s-ignhored-space+

33

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.20. Separ ation Spaces

{[- Jfirst:[-|Jsamy,[-] ast:[- |Sosa[- }:i} %AML 1.1
'map {
? lmap {
? Ilstr "first”
I'str "Sammy",
? Ilstr "last"
I'lstr "Sosa"
Legend: } Hmap {
- separ at e- spaces) 5 iistr "hr"
s-separate-lines(n): : Ilint "65",
s-1_ndent(n); ? Ilstr "avg"
I'1float "0.278"
}
}

4.2.5. Ignored Line Prefix

YAML discardsthe“empty” prefix of each scalar content line. This prefix alwaysincludestheindentation, and depending
on the scalar style may also include all leading white space. The ignored prefix is apresentation detail and must never be
considered part of anode's content information.

[76] s-ignored-prefix(n,s) ::=s = plain O s-ignored-prefix-plain(n)
s = double 0O s-ignored-prefix-quoted(n)
s = single 0O s-ignored-prefix-quoted(n)
s = literal O s-ignored-prefix-Dblock(n)
s = folded 0O s-ignored-prefix-Dblock(n)

» Plain scalars must not contain any tab characters, and all leading spaces are always discarded.

[771 s-ignored-prefix-plain(n) ::= s-indent(n) s-ignored-space*

* Quoted scalars may contain tab characters. Again, all leading white space is always discarded.

[78] s-ignored-prefix-quoted(n) ::= s-indent(n) s-ignored-white*

« Block scalarsrely on indentation; hence leading white space, if any, is not discarded.

[79] s-ignored-prefix-block(n) ::= s-indent(n)

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.21. Ignored Prefix

pl ai n: text %rAML 1.1
o Jines
quoted: "text ”[)m?l {t vl ai
T I 2 Ilstr "plain
-.t').-.lé.c.)é.k;l_' r|1es : Ilstr "text |lines",
e ? Ilstr "quoted"
:':i'.-jELEt ext : Ilstr "text lines",
itoir —lines ? Ilstr "bl ock”

: Ilstr "text- —lines\n"
Legend: }

gnored- pref i x-bl ock(n))
s-ndent (n);

An empty lineline consists of the ignored prefix followed by aline break. When trailing block scalars, such lines can also
be interpreted as (empty) comment lines. Y AML provides a chomping mechanism to resolve this ambiguity.

::= (s-indent(<n) |
b-normal i zed

[80] I -enpty(n,s)

Example 4.22. Empty Lines

s-ignored-prefix(n,s))

4.2.6. Line Folding

OYAML 1.1
- foo
Ilseq {
bar I'l'str "foo\nbar",
- I'l'str "foo\n\nbar"
foo }
bar Legend:
R [-enpty(n,s)]
- coment:

Line folding allows long lines to be broken for readability, while retaining the original semantics of a single long line.
When folding is done, any line break ending an empty line is preserved. In addition, any specific line breaks are also
preserved, even when ending a non-empty line.

[81] b-1-fol ded-specific(n,s) ::= b-specific |-empty(n,s)*

Hence, folding only applies to generic line breaks that end non-empty lines. If the following line is also not empty, the
generic line break is converted to a single space (#x20).

[82] b-1-fol ded-as-space ::= b-generic

35

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

If the following line is empty line, the generic line break isignored.

[83] b-1-folded-trimed(n,s)

::= b-ignored-generic |-enpty(n,s)+

Thus, afolded non-empty line may end with one of three possible folded line break forms. The original form of such a
folded line break is a presentation detail and must not be used to convey node's content information.

[84] b-1-fol ded-any(n,s) ::=

b-1-fol ded-specific(n,s)
| b-1-fol ded-as-space
| b-1-folded-trinmred(n,s)

Example 4.23. Line Folding

>o
speci fic[0]
trimed |
1
I
R
asil
L-J
space

%rAML 1.1
--- Ilstr
"speci fic\L\
t ri mred\ n\ n\ n\
as space"
Legend:
b-T-1ol ded-speciTic(n,s)]
b-T-Tol ded-as-space

The above rules are common to both the folded block style and the scalar flow styles. Folding does distinguish between
the folded block style and the scalar flow stylesin the following way:

Block Folding

Flow Folding

In the folded block style, folding does not apply to line breaks or empty lines that preced or follow a
text line containing leading white space. Note that such aline may consist of only such leading white
space; an empty block line is confined to (optional) indentation spaces only. Further, the fina line
break and empty lines are subject to chomping, and are never folded. The combined effect of these
rulesisthat each “paragraph” isinterpreted as aline, empty lines are used to present a line feed, the
formatting of “more indented” lines is preserved, and final line breaks may be included or excluded
from the node's content information as appropriate.

Folding in flow styles provides more relaxed, less powerful semantics. Flow styles typically depend
on explicit indicatorsto convey structure, rather than indentation. Hence, in flow styles, spacespreceding
or following the text in aline are a presentation detail and must not be considered a part of the node's
content information. Once all such spaces have been discarded, folding proceeds as described above.
In contrast with the block folded style, al line breaks are folded, without exception, and aline consisting
only of spaces is considered to be an empty line, regardless of the number of spaces. The combined
effect of these processing rulesis that each “paragraph” isinterpreted as a line, empty lines are used
to present aline feed, and text can be freely “more indented” without affecting the node's content in-
formation.

4.3. YAML Character Stream

A YAML character stream may contain several Y AML documents, denoted by document boundary markers. Each document
presents a single independent root node and may be preceded by a series of directives.

36

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

4.3.1. Directives

Directivesareinstructionsto the Y AML processor. Like comments, directives are presentation details and are not reflected
in the serialization tree (and hence the representation graph). This specification definestwo directives, “YAML” and “TAG',
and reserves all other directives for future use. Thereis no way to define private directives. Thisisintentional .

[85] I|-directive ::=1|-yam -directive | I-tag-directive | |-reserved-directive

Each directiveis specified on a separate non-indented line starting with the* 9% indicator, followed by the directive name
and aspace-separated list of parameters. The semantics of these tokens depend on the specific directive. A Y AML processor
should ignore unknown directives with an appropriate warning.

[86] | -reserved-directive ::= “9% ns-directive-nane
(s-ignored-space+ ns-directive-paraneter)*
s-1-conment s

[87] ns-directive-nane ::= ns-char+

[88] ns-directive-paraneter ::= ns-char+

Example 4.24. Reserved Directives

(%00 bar; baz, # Shoul d be ignored %AML 1.1
with a warning. | I!,!S”
m m foo
-- foo
Legend:

[-reserved-direciivel

4.3.1.1. “YAM_" Directive

The* YAM.” directive specifiestheversion of Y AML the document adheresto. This specification definesversion1. 1”.
A version 1.1 YAML processor should accept documentswith an explicit “%/rAML 1. 1” directive, aswell asdocuments
lacking a®“ YAML" directive. Documentswith a* YAML" directive specifying ahigher minor version (e.g. “%rAML 1. 27)
should be processed with an appropriate warning. Documents with a“ YAML” directive specifying a higher mgjor version
(eg. “%rAML 2. 0") should be rejected with an appropriate error message.

[89] I -yam -directive ::= “9% “Y' “A" “M “L”
s-i gnor ed- space+ ns-yanl -version
s-1-conments

[90] ns-yam -version ::= ns-dec-digit+ “.” ns-dec-digit+

Example 4.25. “ YAM." directive

|%(AML 1.2 # Attenpt parsing UYAML 1.1
with a warning] "str "t 00"
"foo"
Legend:

37

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

It is an error to specify more than one “YAM." directive for the same document, even if both occurences give the same
version number.

Example 4.26. Invalid Repeated YAML directive

%rAML 1.1 ERROR:
WYAML| 1.1 The [YAM_| directive nust only be
foo gi ven at npbst once per docunent.

4.3.1.2. “TAG’ Directive

The“ TAG' directive establishes a shorthand notation for specifying node tags. Each “ TAG' directive associates ahandle
with a prefix, allowing for compact and readabl e tag notation.

[91] | -tag-directive ::= “9% “T" “A" “G
s-i gnor ed-space+ c-tag-handl e
s-i gnored-space+ ns-tag-prefix
s-1-comrent s

Example 4.27. “TAG’ directive

[TAG Tyami I: tag. yam . or g, 2002 UWAM. 1.1

Ilstr "foo"

lyam !'str "foo"

Legend:
-tag-directive

Itisan error to specify morethan one“ TAG’ directive for the same handle in the same document, even if both occurences
give the same prefix.

Example 4.28. Invalid Repeated TAG directive

WTAG ! !foo ERROR:
%TAG [!] !'foo The TAG directive nust only
bar be given at nost once per

in the same document.

4.3.1.2.1. Tag Prefixes

There are two tag prefix variants:

[92] ns-tag-prefix ::= ns-local-tag-prefix | ns-global-tag-prefix

38

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Local Tags If the prefix beginswitha“! ” character, shorthands using the handle are expanded to alocal tag beginning
with “! . Note that such atag isintentionally not a valid URI, since its semantics are specific to the
application. In particular, two documents in the same stream may assign different semanticsto the same
local tag.

[93] ns-local-tag-prefix ::=“!" ns-uri-char*

Global Tags

If the prefix beginswith acharacter other than“! ”, it must to beavalid URI prefix, and should contain
at least the scheme and the authority. Shorthands using the associated handle are expanded to globally
unique URI tags, and their semanticsis consistent across applications. In particular, two documentsin
different streams must assign the same semantics to the same global tag.

[94] ns-global -tag-prefix ::= ns-tag-char ns-uri-char*

Example 4.29. Tag Prefixes

I <!I'f oobar> "bar",
I <tag:yam . org, 2002: str> "string"

YTAG 1 %rAML 1.1
9FTAG !yani! itag:yanm .org, 2002: : 1seq |

- !'bar "baz"

- lyam !'str "string"

Legend:

4.3.1.2.2. Tag Handles

The tag handle exactly matches the prefix of the affected shorthand. There are three tag handle variants:

[95] c-tag-handle ::= c-primary-tag-handl e

Primary Handle

| ns-secondary-tag-handl e
| c-naned-tag-handl e

Theprimary tag handleisasingle“! ” character. Thisallows using the most compact possible notation
for asingle “primary” name space. By default, the prefix associated with this handle is“! ”. Thus,
by default, shorthands using this handle are interpreted as local tags. It is possible to override this
behavior by providing an explicit “TAG’ directive associating a different prefix for thishandle. This
provides smooth migration from using local tagsto using global tags by a simple addition of asingle
“TAG' directive.

[96] c-primary-tag-handle ::= “!”

39

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.30. Migrating from Local to Global Tags

Private application:
!foo "bar"

%rAML 1.1

I <l foo> "bar"

Mgrated to gl obal:

%TAG ! tag: ben-kiki.org, 2000: app/ %rAML 1.1
1foo "bar" I <t ag: ben- ki ki . or g, 2000: app/ f 00> "bar"
Secondary Handle The secondary tag handle is written as “! | ”. This alows using a compact notation for a single

“secondary” name space. By default, the prefix associated with this handle is
“t ag: yam . or g, 2002: " used by the YAML tag repository [http://yaml.org/type/index.html]
providing recommended tags for increasing the portability of Y AML documents between different
applications. It is possible to override this behavior by providing an explicit “TAG’ directive associ-
ating a different prefix for this handle.

[97] ns-secondary-tag-handle ::

Named Handles A named tag handle surrounds the non-empty name with “! " characters. A handle name must only
be used in a shorthand if an explicit “TAG’ directive has associated some prefix with it. The name of
the handle is a presentation detail and is not part of the node's content information. In particular, the

YAML processor need not preserve the handle name once parsing is completed.

[98] c-naned-tag-handle ::

ns-word-char+ “!”

Example 4.31. Tag Handles

Named handl es have no defaul t:
%TAG i!o! | tag: ben-kiki. org, 2000:

!foo "bar"
I'lstr "string"
loltype "baz"

Explicitly specify default settings: |[%AM. 1.1
YTAG [!] !
YTAG i1l tag: yam . or g, 2002: 'seq [

I <I'foo> "bar",
I <tag:yam .org, 2002: str> "string"
I <t ag: ben- ki ki . or g, 2000: t ype> "baz"

]

Legend:
C-primary-tag- handl e

4.3.2. Document Boundary Markers

YAML streams use document boundary markers to allow more than one document to be contained in the same stream.

Such markers are a presentation detail and are used exclusively to convey structure. A line beginning with “- - -

may

be used to explicitly denote the beginning of anew Y AML document.

[99] c-docunent-start

40

http://yaml.org/type/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

When YAML isused asthe format of a communication channel, it is useful to be able to indicate the end of a document
without closing the stream, independent of starting the next document. Lacking such a marker, the YAML processor
reading the stream would be forced to wait for the header of the next document (that may be long time in coming) in order
to detect the end of the previous one. To support this scenario, a Y AML document may be terminated by an explicit end
line denoted by “. . . ", followed by optiona comments. To ease the task of concatenating YAML streams, the end
marker may be repeated.

[100] c- document-end ::= “.” “." “.”
[101] | - docunent -suffix ::= (c-document-end s-1l-conments)+

Example 4.32. Document Boundary Markers

[---] %AML 1.1
f oo

o Ilstr "foo"
.?.".'.".'." -------------------------------------- 0WAM_ 1- 1
Repeated end marker.

L listr "bar"
[---] %AML 1.1
bar))
No end marker. Ilstr "baz
baz Legend:

"""" v C-docunment-start] 1 -docunent - suffix:

4.3.3. Documents

A YAML document isasingle native data structure presented as a single root hode. Presentation details such as directives,
comments, indentation and styles are not considered part of the content information of the document.

Explicit Documents An explicit document begins with a document start marker followed by the presentation of the root
node. The node may begin in the same line as the document start marker. If the explicit document's
node is completely empty, it is assumed to be an empty plain scalar with no specified properties.
Optiona document end marker(s) may follow the document.

[102] | - explicit-docunment ::= c-docunent-start
(s-1+bl ock-node(-1, bl ock-in) | s-I-enpty-block)
| - document - suf fi x?

Implicit Documents An implicit document does not begin with a document start marker. In this case, the root node must
not be presented as a completely empty node. Again, optional document end marker(s) may follow
the document.

[103] | -inplicit-docunment ::= s-ignored-space* ns-I|+bl ock-node(-1, bl ock-in)
| - document - suf fi x?

In general, the document's node isindented as if it has a parent indented at -1 spaces. Since a node must be more indented
that its parent node, this allows the document's node to be indented at zero or more spaces. Notethat flow scalar continuation
lines must be indented by at |east one space, even if their first line is not indented.

41

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.33. Documents

"Root flow %AML 1.1
scal ar"
Il'str "Root flow scal ar"

...............

---oitlstr > WAM. 1.1
" Root bl ock o
“scal ar ! I'lstr "Root block scalar”
oo UWAML 1.1
Root collection:
‘foo : bar Hmap {
?.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'-.-.-.. ------------- ’) ! !Str "f00"
... #1s optlonal.g . Iistr "bar"
T }
Explicit document may be enpty.

I'str ""

Legend:

4.3.4. Complete Stream

A sequence of bytesisaY AML character streamif, taken asawhole, it complieswiththel - yam - st r eamproduction.
The stream begins with a prefix containing an optional byte order mark denoting its character encoding, followed by op-
tional comments. Note that the stream may contain no documents, even if it contains a non-empty prefix. In particular, a
stream containing no chareactersis valid and contains no documents.

[104] | -yam -stream :: = c-byte-order-mark? |-coment*
(I-first-docunent |-next-docunent*)?

Example 4.34. Empty Stream

|.=.# A stream nmay contain # This stream contains no
docunents, only comments.

no docunents. |

Legend:
[-yam -stream

The first document may be implicit (omit the document start marker). In such a case it must not specify any directives
and will be parsed using the default settings. If the document is explicit (begins with an document start marker), it may
specify directivesto control its parsing.

[105] | -first-document ::= (I-inplicit-docunent
| (I-directive* |-explicit-docunent))

42

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.35. First Document

Inplicit docunment. Root

foo : bar

coll ection (mappi ng) node.

%rAML 1.1

Ilstr "Text content\n"

Explicit document. Root
scalar (literal) node.

Text content |

Legend:
[-Tirst-document]

To easethetask of concatenating character streams, following documents may begin with abyte order mark and comments,
though the same character encoding must be used through the stream. Each following document must be explicit (begin
with adocument start marker). If the document specifies no directives, it is parsed using the same settings as the previous
document. If the document does specify any directives, al directives of previous documents, if any, are ignored.

%rAML 1.1
'map {
? Ilstr "foo"
I'l'str "bar"
}

[106] | - next -docunent ::= c-byte-order-nmark? |-comment*
| -directive* |-explicit-docunent

Example 4.36. Next Documents

I "First docunent"

1foo "No di rectives"|

%AG ! !foo

lbar "Wth directives" |

%rAML 1.1

baz "Reset settings”|

%rAML 1.1

Il'str "First docunent"”

I<lfoo> "No directives"

I <l foobar> "Wth directives"

I <I'baz> "Reset settings"

Legend:

4.4. Nodes

Each presentation node may have two optional properties, anchor and tag, in addition to its content. Node properties may
be specified in any order before the node's content, and either or both may be omitted from the character stream.

[107] c- ns-properties(n,c) ::=

[- next-docunent]

(c-ns-tag-property
(s-separate(n,c) c-ns-anchor-property)?)
(c-ns-anchor-property

(s-separate(n,c) c-ns-tag-property)?)

43

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.37. Node Properties

TSEY: %WAML 1.1
""" .l - -
_@Jl " et ''map {
__Too® A Istr; bar ? &AL !lstr "foo"
\@az); baz : *al Ilstr "bar",
? llstr &A2 "baz"
Legend: *al
C-Ns-anchor - property] €-ns-tag- property:}

4.4.1. Node Anchors

The anchor property marks a node for future reference. An anchor is denoted by the “ &” indicator. An aias node can
then be used to indicate additional inclusions of the anchored node by specifying its anchor. An anchored node need not

be referenced by any alias node; in particular, it is valid for al nodes to be anchored.

[108] c- ns- anchor - property ::= *

Note that as a serialization detail, the anchor nameis preserved in the serialization tree. However, it is not reflected in the
representation graph and must not be used to convey content information. In particular, the YAML processor need not

&’ ns-anchor - nane

preserve the anchor name once the representation is composed.

[109] ns- anchor - nanme :: = ns-char

Example 4.38. Node Anchors

+

Fi rst occurence:
Second occurence:

Legend:
[C-Nns-anchor-property

4.4.2. Node Tags

Thetag property identifiesthe type of the native data structure presented by the node. A tag isdenoted by the“! ” indicator.

UYAML 1.1
'map {
? !lstr "First occurence"
&A !'I'str "Val ue",
? llstr "Second occurence"
*A
}

In contrast with anchors, tags are an inherent part of the representation graph.

[110] c- ns-t ag- property ::=

c-verbatimtag |

| c-ns-non-specific-tag

c-ns-shorthand-tag

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Verbatim Tags A tag may be written verbatim by surrounding it with the “ <” and “ >" characters. In this case, the
YAML processor must deliver the verbatim tag as-is to the application. In particular, verbatim tags
are not subject to tag resolution. A verbatim tag must either begin with a“! ” (alocal tag) or be a
valid URI (agloba tag).

[111] c-verbatimtag ::= “!" “<” ns-uri-char+ “>"

Example 4.39. Verbatim Tags

! <tag:yani . org, 2002: str>| foo : %WAML 1.1
baz
'map {

? I<tag:yani.org, 2002:str> "foo"

Legend: | <! bar> "baz"

C-verbatimtag }

Example 4.40. Invalid Verbatim Tags

- !<E> f 0o ERROR:
- 1<$:2> bar - Verbatimtags aren't resol ved,
e so [I']is invalid.

URI tag nor a local tag starting
with !,

Tag Shorthands A tag shorthand consists of avalid tag handle followed by a non-empty suffix. The tag handle must
be associated with a prefix, either by default or by using a“TAG’ directive. The resulting parsed tag
is the concatenation of the prefix and the suffix, and must either begin with “! ” (alocal tag) or be a
valid URI (aglobal tag). When the primary tag handle is used, the suffix must not contain any “! ”
character, as this would cause the tag shorthand to be interpreted as having a named tag handle. If
the “! " character exists in the suffix of atag using the primary tag handle, it must be escaped as
“921", and the parser should expand this particular escape sequence before passing the tag to the
application. This behavior is consistent with the URI character quoting rules (specifically, section
2.3 of RFC2396 [http://www.ietf.org/rfc/rfc2396.txt]), and ensures the choice of tag handle remains
apresentation detail and is not reflected in the serialization tree (and hence the representation graph).
In particular, the tag handle may be discarded once parsing is completed.

[112] c- ns-shorthand-tag :: = (c-primary-tag-handl e ns-tag-char+)
| (ns-secondary-tag-handl e ns-uri-char+)
| (c-naned-tag-handl e ns-uri-char+)

45

RenderX

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.41. Tag Shorthands

%TAG ! o!

- [Tocar] o0
- (LIt] bar
- [Foltype] baz

t ag: ben- ki ki . or g, 2000:

Legend:
C-ns-shorthand-tag

Example 4.42. Invalid Shorthand Tags

UWAML 1.1
Ilseq [

I<l'|ocal > "foo",

I <tag:yani.org, 2002: str> "bar",

I <t ag: ben-ki ki . org, 2000: t ype> "baz",
]

9%AG ! o! tag: ben-Kkiki.org, 2000:

.........

- i'hl type baz

Non-Specific Tags

ERROR:

- The | ooks |ike a handl e.

.........

- The :'o!: handl e has no suffix.

- The [!_HT] handl e wasn't decl ared.

If anode has no tag property, it is assigned a non-specific tag: “?” for plain scalarsand “! ” for all
other nodes. Non-specific tags must be resolved to a specific tag for acomplete representation graph
to be composed. It isalso possible for the tag property to explicitly specify the node hasthe“! ” non-
specifictag. Thisisonly useful for plain scalars, causing them to beresolved asif they were non-plain
(hence, by the common tag resolution convention, as“t ag: yamni . or g, 2002: st r”). Thereisno

way to explicitly set thetag to the “?” non-specific tag. Thisisintentional.

[113] c- ns-non-specific-tag ::= “1”

Example 4.43. Non-Specific Tags

Assuni ng conventional resolution:
. omqon

- 12

- [1] 12

Legend:
C-NS-non-specific-tag

%rAML 1.1

I'lseq [
I <tag:yam .org, 2002: str> "12",
I <tag:yam .org, 2002:int> "12",
I <tag:yam .org, 2002: str> "12",

]

46

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

4.4.3. Node Content

Node content may be presented in either aflow style or a block style. Block content always extends to the end of aline
and uses indentation to denote structure, while flow content starts and ends at some non-space character within aline and
usesindicatorsto denote structure. Each collection kind can be presented in asingle flow collection style or asingle block
collection style. However, each collection kind also provides compact in-line forms for common cases. Scalar content
may be presented in the plain style or one of the two quoted styles (the single quoted style and the double quoted style).
Regardless of style, scalar content must always be indented by at least one space. In contrast, collection content need not
be indented (note that the indentation of the first flow scalar line is determined by the block collection it is nested in, if

any).

[114] ns-fl ow scal ar(n, c)

[115] c-fl ow-col | ecti on(n, c)

[116] ns-f | ow cont ent (n, c)
[117] c- | +bl ock- scal ar (n)

[118] c- | - bl ock-col | ecti on(n, c)
[119] c- | +bl ock- cont ent (n, c)

c-plain(max(n, 1), c)

| c-single-quoted(max(n, 1), c)
| c-doubl e-quot ed(max(n, 1), c)
| c-fl ow mapping(n,c)
c-flowcollection(n,c)
c-1+literal (max(n, 0))

ns-flowscalar(n,c) |
c- | +f ol ded(max(n, 0)) |

c-fl ow sequence(n, c)

c-1-bl ock-sequence(n,c) |
c-| +bl ock-scal ar (n)

| c-1-block-collection(>n,c)

Example 4.44. Mandatory Scalar Indentation

c-1 - bl ock- mappi ng(n)

--- OYAML 1.1
f oo: ---

" bar ''map {

" ? Ilstr "foo"

baz
EJ_ Ilstr "bar baz"
" }
“foo WAM 1.1
i+ bar o
T Ilstr "foo bar”
foo oAML 1.1

bar ---
- Ilstr "foo bar"

f oo %rAML 1.1

Ilstr "foo bar\n"

Legend:

[Nor mal "nor e-i ndent ed™ i ndent ati on

47

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.45. Flow Content

scal ars:

plain: !lstr [some text |

quot ed:

UrAML 1.1
'map {
? Ilstr "scal ars”
? Ilstr "plain"

'map {

singl e: l o Ilstr "sone text",
? Ilstr "quoted"
doubl e: ["some text"]: C 1imap {
col | ecti ons: 2 Ilstr "single"
I'I'str "some text",
MapY ? Ilstr "doubl e"
key: val ue]} - IIstr "some text"
napping:iiﬂkgy&ﬂyg{ggﬂ}jl ? Ilstr "collections": 'map {
? llstr "sequence" Ilseq [
Legend: ? llstr "entry",
ns-fTow scal ar] 'map {
c-Tlow col'lection: ? Ilstr "key" : !lstr "value"
hot__cont ent; Pl
? Ilstr "mappi ng": 'map {
? Ilstr "key" I'lstr "val ue"
}r}
Example 4.46. Block Content
bl ock styles: %rAML 1.1
scal ars: ---
literal: !lstr [| HMmap {
#Tusr/bin perl ? Ilstr "block styles 'map {
- ? llstr "scal ars” 'map {
print "Hello, world!\n"; (] 5 1istr "literal "

f ol ded: E
Thi s sentence

is false. ||
Il'seq

col | ections:

Legend:

Ilstr "#!'1/usr/bin/perl\n\
print \"Hello,
wor [d! AN\ "\ n",

? Ilstr "fol ded"
I'lstr "This sentence
is false.\n"
H
? Ilstr "collections” 'map {
? llstr "sequence" Ilseq [
I'lstr "entry",
'map {
? Ilstr "key" I'l'str "val ue
}
1
? Ilstr "mapping" 'map {
? Ilstr "key" I'lstr "val ue"

P}

48

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

4.4.4. Alias Nodes

Subsequent occurrences of a previously serialized node are presented as alias nodes, denoted by the“ *” indicator. The
first occurrence of the node must be marked by an anchor to allow subsequent occurrences to be presented as alias nodes.
An alias node refers to the most recent preceding node having the same anchor. It is an error to have an alias node use an
anchor that does not previously occur in the document. It is not an error to specify an anchor that is not used by any aias
node. Note that an alias node must not specify any properties or content, as these were already specified at the first occur-

rence of the node.

"ok

[120] c- ns-al i as-node :: =

Example 4.47. Alias Nodes

ns- anchor - nane

...............

Fi rst occurence:
Second occurence:

Legend:
C-ns-alias-node

4.4.5. Complete Nodes
4.4.5.1. Flow Nodes

A complete flow node is either an alias node presenting a second occurence of a previous node, or consists of the node
properties followed by the node's content. A node with empty content is considered to be an empty plain scalar.

[121] ns-f | ow node(n,c) ::=

c-ns-alias-node |

OorAML 1.1
Tmap {
? !lstr "First occurence"
&A !!'str "Val ue",
? llstr "Second occurence"
* A
}

ns-fl ow content(n,c)

| (c-ns-properties(n,c)
(/* enpty plain scalar content */

| (s-separate(n,c) ns-flowcontent(n,c))))

Example 4.48. Flow Nodesin Flow Context

[%/AML 1.1
|W t hout properties], -
[2anchor T Anchor ed"] ttseq [.
= ———— — Ilstr "Wthout properties"”,
[L!str ITagged:] &A !'!'str "Anchored",
[Fanchor | # Alias node Ilstr "Tagged",
[lIstr] # Enpty plain scalar *A,
] Ilstr "",
]
Legend:
hs-TTow node(n, €)] ns-flow content(n, c):
49

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Since both the node's properties and node content are optional, thisallowsfor acompletely empty node. Completely empty
nodes are only valid when following some explicit indicator for their existance.

[122] e-enpty-flow ::= /* enpty plain scalar node */

In the examples, completely empty nodes are displayed as the glyph “° . Note that this glyph corresponds to a position
in the characters stream rather than to an actual character.

Example 4.49. Completely Empty Flow Nodes

{ OYAML 1.1
? foo E
?m: bar, Htmap {
o] - ? Ilstr "foo"
[[Ciretr o)
] 2 Ilstr "",
: Ilstr "bar",
Legend: ? Mlstr "™,
Ee-enpty-TTow 'str ""
}

4.4.5.2. Block Nodes

A complete block node consists of the node's properties followed by the node's content. In addition, a block node may
consist of a (possibly completely empty) flow node followed by aline break (with optional comments).

[123] ns- | +f I owi n-bl ock(n,c) ::= ns-flow node(n+1,flowout) s-l-coments
[124] ns- | +bl ock-i n-bl ock(n,c) ::= (c-ns-properties(n+l,c) s-separate(n+l,c))?
c-1 +bl ock-content (n, c)
[125] ns- | +bl ock-node(n,c) ::= ns- | +bl ock-i n- bl ock(n, c)
| ns-1+flowin-block(n,c)
[126] s- | +bl ock- node(n, c) ::= s-separate(n+l,c) ns-I|+bl ock-node(n, c)

Example 4.50. Block Nodes

[Fflowin bi ock"l|_i 9WrAML 1.1
Ilseq [
I'lstr "",
'map {
? Ilstr "foo"
o llstr "7,
. ? Mlstr "',
Legend: : Ilstr "bar"
[NS-T+ T oW i n- bl ock(N, c)] 5 sty " '
ns-1+bl'ock-1n-block(n, c): Clistr v
§-1-*bl ock- node(n, cJ| } o
]
50

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

A block node always spansto the end of the line, even when completely empty. Completely empty block nodes may only
appear when there is some explicit indicator for their existance.

[127] s- | - enpt y- bl ock ::

e-enmpty-flow s-1-coments

Example 4.51. Completely Empty Block Nodes

seq: UWAML 1.1
-|° # Enpty plain scalarl]
- ? foo 'seq [
. lstr "",
o Il map {
' ? Ilstr "foo"
: bar, o Mlstr ",
1] 2 listr
: : Ilstr "bar",
? Ilstr "',
11
Legend: } str
s-T-enpty-Dbl ock]]

4.5. Scalar Styles

YAML provides arich set of scalar styles to choose from, depending upon the readability requirements: three scalar flow
styles (the plain style and the two quoted styles: single quoted and double quoted), and two scalar block styles (the literal
style and the folded style). Comments may precede or follow scalar content, but must not appear insideit. Scalar node style
isapresentation detail and must not be used to convey content information, with the exception that untagged plain scalars
areresolved in adistinct way.

4.5.1. Flow Scalar Styles

All flow scalar styles may span multiple lines, except when used in simple keys. Flow scalars are subject to (flow) line
folding. This allows flow scalar content to be broken anywhere a single space character (#x20) separates non-space
characters, at the cost of requiring an empty line to present each line feed character.

4,5.1.1. Double Quoted

The double quoted style is specified by surrounding “" ” indicators. Thisis the only scalar style capable of expressing
arbitrary strings, by using “\ " escape sequences. Therefore, the“\ ” and“" " characters must al so be escaped when present
in double quoted content. Note it is an error for double quoted content to contain invalid escape sequences.

[128] nb- doubl e- char
[129] ns- doubl e- char

(nb' Char - N \ ” - “un) |
nb- doubl e-char - s-white

ns-esc- char

51

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Double quoted scalars are restricted to a single line when contained inside asimple key.

[130] c- doubl e- quot ed(n,c) ::= “"" nb-doubl e-text(n,c) “"”
[131] nb- doubl e-text(n,c) ::=c = flowout O nb-doubl e-any(n)

c flowin O nb-doubl e-any(n)
¢ = flowkey O nb-doubl e-single
[132] nb- doubl e-any(n) ::= nb-doubl e-single | nb-double-nmulti(n)

Example 4.52. Double Quoted Scalars

9%AML 1.1
’ I map {
? Ilstr "sinple key"
'map {
? llstr "also sinple"
I'lstr "val ue",

? llstr "not a sinple key"

Legend: . !lstr "any val ue"
nb- doubl e- singl €] hb- doubl e- mul ti (n): }
£-doubl e-quoted(m, C); }

A single line double quoted scalar is a sequence of (possibly escaped) non-break Unicode characters. All characters are
considered content, including any leading or trailing white space characters.

[133] nb- doubl e-si ngl e ::= nb-doubl e-char*

In amulti-line double quoted scalar, line breaks are subject to flow line folding, and any trailing white space is excluded
from the content. However, an escaped line break (using a“\ ") isexcluded from the content, while white space preceding
it is preserved. This allows double quoted content to be broken at arbitrary positions.

[134] s- | -doubl e-fol ded(n) ::= s-ignored-white* b-I|-fol ded-any(n, double)
[135] s- | - doubl e-escaped(n) ::= s-white* “\” b-ignored-any

| -enmpty(n, doubl e) *
[136] s- | - doubl e- break(n) ::= s-l-double-folded(n) | s-I-double-escaped(n)

Example 4.53. Double Quoted Line Breaks

"as space %rAML 1.1
trimmed|:)

ﬂ Ilstr "as space \

o tri mred\ n\
speci fic[D speci fic\ L\ n\

ﬂ escaped\t\
escapedi:} f none

e . Legend:
none

52

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

A multi-line double quoted scalar consists of a (possibly empty) first line, any number of inner lines, and afinal (possibly
empty) last line.

[137] nb- doubl e-mul ti (n) ::= nb-1-double-first(n)
| - doubl e-i nner(n)*
s- nb-doubl e- | ast (n)

L eading white spacein thefirst lineis considered content only if followed by anon-space character or an escaped (ignored)
line break.

[138] nb- | -doubl e-first(n) ::= (nb-doubl e-char* ns-doubl e-char)?

s-1 - doubl e- break(n)

Example 4.54. First Double Quoted Line

- %rAML 1.1

e Ilseq |
e Ilstr " last",
g _ Ilstr " last",

) Ilstr " \tfirst last",
| ast ™"]

Legend:

All leading and trailing white space of an inner lines are excluded from the content. Note that such while prefix white
space may contain tab characters, line indentation is restricted to space characters only. It is possible to force considering
leading white space as content by escaping the first character (“\ -, “\ -” or “\'t).

[139] | - doubl e-i nner(n) ::= s-ignored-prefix(n,double) ns-doubl e-char

(nb-doubl e-char* ns-doubl e-char)?
s-1 - doubl e- break(n)

Example 4.55. Inner Double Quoted Lines

first OorAML 1.1
|- Zinner 151 - . \
[\ inner 20170 I iSLLer |1rs{
ast inner 2\
| ast"
Legend:

[-doubl e-inner (n)]

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

[140] s- nb- doubl e-1ast(n) ::= s-ignored-prefix(n,double)
(ns-doubl e-char nb-doubl e-char*)?

53

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.56. Last Double Quoted Line

- "first %rAML 1.1
Ilseq [
Il'str "first ",
I'l'str "first\nlast",
Il'str "first inner \tlast",

]

Legend:
[S-nb-doubl e-Tast(n)]

4.5.1.2. Single Quoted

The single quoted styleis specified by surrounding “ ' " indicators. Therefore, within asingle quoted scalar such characters
need to be repeated. Thisis the only form of escaping performed in single quoted scalars. In particular, the “\ ” and “" "
characters may be freely used. This restricts single quoted scalars to printable characters.

[141] c- quot ed- quote ::= *"" “'”
[142] nb- si ngl e- char (nb-char - “"”) | c-quoted-quote
[143] ns- si ngl e- char nb-si ngl e-char - s-white

Example 4.57. Single Quoted Quotes

"here[" " Js to "quotes"’ %AML 1.1

Ilstr "here's to \"quotes\""

Legend:
i ngl e- quot ed- quot e

Single quoted scalars are restricted to a single line when contained inside a simple key.

[144] c- si ngl e-quoted(n,c) ::= “'" nb-single-text(n,c) “'”
[145] nb-si ngl e-text(n,c) ::= ¢ flowout O nb-single-any(n)

c flowin O nb-single-any(n)
c = flowkey O nb-single-single(n)
[146] nb- si ngl e-any(n) ::= nb-single-single(n) | nb-single-multi(n)

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.58. Single Quoted Scalars

UWAML 1.1
'map {
? Ilstr "sinple key"
'map {
? Ilstr "also sinple"
I'l'str "val ue",

? Ilstr "not a sinple key"

Legend: : Ilstr "any val ue"
nb-singl'e-singl e] nb-single-mul ti(n): J
£-singl’e-quoted(n, ¢); }

A single line single quoted scalar is a sequence of non-break printable characters. All characters are considered content,
including any leading or trailing white space characters.

[147] nb- si ngl e-singl e(n) ::= nb-single-char*

In amulti-line single quoted scalar, line breaks are subject to (flow) line folding, and any trailing white space is excluded
from the content.

[148] s- | -si ngl e-break(n) ::= s-ignored-white* b-I-fol ded-any(n, single)

Example 4.59. Single Quoted Line Breaks

"as space[5} | UYAML 1.1
. = o
trimmedgc: Ilstr "as space \
ﬂ o tri mred\ n\
speci fi c[D speci fic\L\n\
ﬂ none"
none'
Legend:
BS-T-singl e-br eak(n)]
s-1_gnored-white s-white (Content);

A multi-line single quoted scalar consists of a (possibly empty) first line, any number of inner lines, and afinal (possibly
empty) last line.

[149] nb-si ngl e-mul ti (n) ::= nb-1-single-first(n)

| -single-inner(n)*
s-nb-singl e-1 ast (n)

Leading white space in thefirst line is considered content only if followed by a non-space character.

[150] nb-1 -si ngl e-first(n) ::= (nb-single-char* ns-single-char)?
s-1-singl e-break(n)

55

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.60. First Single Quoted Line

- %rAML 1.1
) Ilseq [
Ilstr " last",
Ilstr " last",
) Ilstr " \tfirst last",
]

Legend:

All leading and trailing white space of inner linesis excludced from the content. Note that while prefix white space may
contain tab characters, lineindentation is restricted to space characters only. Unlike double quoted scalars, it isimpossible
to force the inclusion of the leading or trailing spaces in the content. Therefore, single quoted scalars lines can only be
broken where a single space character separates two non-space characters.

[151] | - singl e-i nner(n) ::= s-ignored-prefix(n,single) ns-single-char

(nb-single-char* ns-single-char)?
s-1-singl e-break(n)

Example 4.61. Inner Single Quoted Lines

"first %rAML 1.1
i nner \
Legend: | ast

[-singl e-inner(n)]

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

[152] s- nb-si ngl e-1ast(n) ::= s-ignored-prefix(n,single)
(ns-single-char nb-single-char*)?

Example 4.62. Last Single Quoted Lines

- '"first UrAML 1.1

Ilseq [

I'lstr "first ",
I'l'str "first\nlast",

Legend:

56

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

4.5.1.3. Plain

The plain style uses no identifying indicators, and is therefore the most most limited and most context sensitive scalar
style. Plain scalars can never contain any tab characters. They also must not containthe®: ™ and“ #” character sequences
as these combinations cause ambiguity with key: value pairs and comments. Inside flow collections, plain scalars are
further restricted to avoid containing the “[, “] ”, “{ ", “}” and “, " characters as these would cause ambiguity with the
flow collection structure (hence the need for the flow-in context and the flow-out context).

[153] nb- pl ai n-char (c) = c = flowout O nb-plain-char-out
c =flowin 0O nb-plain-char-in
c = flowkey O nb-plain-char-in
[154] nb- pl ai n-char-out ::= (nb-char - “:" - “#" - #x9 [*TAB*/)
| (ns-plain-char(flowout) “#")
| (“:" ns-plain-char(flowout))
[155] nb- pl ai n-char-in ::= nb-plain-char-out - “,” - “[" - “]" - *“{" - “}"

[156] ns- pl ai n-char (c) nb-pl ai n-char (c) - #x20 /*SP*/

Thefirst plain character isfurther restricted to avoid most indicators as these would cause ambiguity with various Y AML

structures. However, the first character may be“- ", “?” or “: " provided it is followed by a non-space character.
[157] ns-pl ain-first-char(c) ::= (ns-plain-char(c) - c-indicator)
| ¢ ¢ “-" | “? | “:") ns-plain-char(c))

Example 4.63. Plain Characters

Qutside flow collection: %rAML 1.1
- [:]std::vector
o Ilseq |
- N |
p:_,__: up and avay! Ilstr "::std::vector",
) E23) I'lstr "Up, up and away!",
Inside flow collection: Ilint "-123",
- [[::]std::vector, Ilseq [
"Upl, 1 up and away!", Ilstr "::std::vector"”,
2'3] Ilstr "Up, up and away!",
'int "-123",
Legend:]]

NS-plain-first-char(c)]

Plain scalars are restricted to a single line when contained inside a simple key.
[158] ns-pl ain(n,c) ::= flowout O ns-plain-multi(n,c)?
flowin O ns-plain-multi(n,c)?
flowkey O ns-plain-single(c)

C
C
C

57

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.64. Plain Scalars

sinple key]| : { %AML 1.1
[al <o simple] ! map {
_____ ?inot a ? llstr "sinple key"
L Simple key o cany +trmap {
val ue': ? Ilstr "also sinple"
Yoo : Ilstr "val ue",
? Ilstr "not a sinple key"
Legend: I'lstr "any val ue"
s-prain-single(c)] Ns-plain-nmulti(n, c): } I

The first line of any flow scalar is indented according to the collection it is contained in. Therefore, there are two cases
where aplain scalar begins on the first column of aline, without any preceding indentation spaces. aplain scalar used as
asimple key of a non-indented block mapping, and any plain scalar nested in a non-indented flow collection. In these
cases, the first line of the plain scalar must not conflict with a document boundary marker.

[159] | - f or bi dden-content ::=/* start of line */
(c-document-start | c-docunent-end)
/* space or end of line */

Example 4.65. Forbidden Non-Indented Plain Scalar Content

ERROR:

[----)11 : foo The [---] and i...: docunent
"""" . >>>: bar start and end markers mnust
oo not be specified as the

[first content line of a
non-i ndented plain scalar.

...........

Nest ed
}

58

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

YAML provides several easy ways to present such content without conflicting with the document boundary markers. For
example:

Example 4.66. Document Marker Scalar Content

PR 9%YAML 1.1
E . foo
: 'map {
[} par 2 1istr "o
. Ilstr "foo",
[? Ilstr "1,
IZL I'lstr "bar"
))
{ UYAML 1.1
5
_ IZ' Ilseq [
] etr
} Ilstr "...",
T Linap {
_ ? Ilstr "---"
Istr "
Legend: }
Content F--] and [.]]
Docunment marker ---i and i ..:

Thus, asingleline plain scalar isasequence of valid plain non-break printable characters, beginning and ending with non-
space character and not conflicting with a document boundary markers. All characters are considered content, including
any inner space characters.
[160] ns- pl ai n-singl e(c) ::= (ns-plain-first-char(c)

(nb-plain-char(c)* ns-plain-char(c))?)
- | -forbi dden-cont ent

Inamulti-line plain scalar, line breaks are subject to (flow) linefolding. Any prefix and trailing spaces are excluded from
the content. Like single quoted scalars, in plain scalars it is impossible to force the inclusion of the leading or trailing
spacesin the content. Therefore, plain scalarslines can only be broken where a single space character separates two non-
space characters.

[161] s- | - pl ai n-break(n) ::= s-ignored-white* b-1-fol ded-any(n, plain)

59

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.67. Plain Line Breaks

as space[5}t |

trinmred?®ll

]

%rAML 1.1

Ilstr "as space \
tri nmed\ n\

speci fic[D speci fic\L\n\
ﬂ none"
none

Legend:
s-T-plaln-break(n)]

A multi-line plain scalar contains additional continuation lines following the first line.

[162] ns-pl ai n-mul ti(n,c) ::= ns-plain-single(c) s-ns-plain-nore(n,c)*

Each continuation line must contain at least one non-space character. Note that it may be preceded by any number of
empty lines.

[163] s- ns-pl ai n-nore(n,c) ::= s-1-plain-break(n)

s-i gnored-prefix(n, plain) ns-plain-char(c)
(nb-plain-char(c)* ns-plain-char(c))?

Example 4.68. Plain Scalars

Tirst Tinel: | WA 1.1
?:—‘1‘"’:"""]‘-‘ : Istr "first line\n\
cmore f1ne; nore |ine"

Legend:

45.2. Block Scalar Header

Block scalars are specified by severa indicators given in aheader preceding the content itself. The header isfollowed by
anignored line break (with an optional comment).

[164] c- b- bl ock- header (s, mt) ::= c-style-indicator(s)
((c-indentation-indicator(m
c- chonpi ng-i ndicator(t))
| (c-chomping-indicator(t)
c-indentation-indicator(m))
S- b- conment

60

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.69. Block Scalar Header

- || # Just the stylel] 9%(AML 1.1
literal
- [>1 # Indentation indicator]| ”??gtE iteral\nt
folded Istr " fol ded\n",
- ||+ # Chonping indicator || IIstr "keep\n\n",
keep Ilstr "-strip",
]

- [>-1 # Both indicatorsi|

strip Legend:
C-b-bl ock-header(s, mi)]

4.5.2.1. Block Style Indicator

Thefirst character of the block scalar header iseither “ | ” for aliteral scalar or “ > for afolded scalar.

literal O
folded 0O “>"

[165] c- styl e-indicator(s) ::=

S
S

Example 4.70. Block Style Indicator

i m 9%AML 1.1
literal
- [>] !!IS?qt["I't I\ n"
Ilstr iteral\n",
f ol ded Ilstr "fol ded\ n",
]

Legend:
[C-Style-indicator(S)]

4.5.2.2. Block Indentation Indicator

Typically, the indentation level of ablock scalar is detected from its first non-empty line. This detection fails when this
line contains leading space characters (noteit may safely start with atab or a“#” character). When detection fails, YAML
requires that the indentation level for the content be given using an explicit indentation indicator. Thislevel is specified
as the integer number of the additional indentation spaces used for the content. If the block scalar begins with leading
empty lines followed by a non-empty line, the indentation level is deduced from the non-empty line. In thiscase, itisan
error for any such leading empty line to contain more spaces than the indentation level deduced from the non-empty line.
It is always valid to specify an indentation indicator for ablock scalar node, though a Y AML processor should only do

S0 in cases where detection will fail.

[166] c-i ndentation-indicator(n) ::= explicit(n) O ns-dec-digit - “0”
detect(m O /* empty */

61

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.71. Block Indentation Indicator

‘. detected

- >
det ect ed
S

L hexplicit

- >

" det ect ed

%rAML 1.1

Ilseq [
Ilstr "detected\n",
I'l'str "\n\n# detected\n",
Ilstr "-explicit\n",
Ilstr "\t-detected\n",

]

Legend:
[C-1ndentation-indi cator (n)]

Example 4.72. Invalid Block Scalar Indentation Indicators

- |
[
-t ext
- >

- -t ext
L text
“.”“| 1

l'-:]t ext

L

4.5.2.3. Block Chomping Indicator

Y AML supports three possible block chomping methods:

Strip Sripping isspecified usingthe” - " chomping indicator. Inthiscase, theline break character of thelast non-empty
line (if any) isexcluded from the scalar's content. Any trailing empty lines are considered to be (empty) comment

lines and are also discarded.

Clip Clipping the default behavior used if no explicit chomping indicator is specified. In this case, The line break
character of the last non-empty line (if any) is preserved in the scalar's content. However, any trailing empty

ERROR:
- Aleading all-space |ine nust

not have too many [spaces]

- Afollowi ng text |ine mnust

than the indicated | evel.

lines are considered to be (empty) comment lines and are discarded.

Keep Keeping is specified using the* +” chomping indicator. Inthis case, theline break character of thelast non-empty
line (if any) is preserved in the scalar's content. In addition, any trailing empty lines are each considered to

present a single trailng content line break. Note that these line breaks are not subject to folding.

The chomping method ised isapresentation detail and isnot reflected in the serialization tree (and hence the representation

graph).
[167] c- chonpi ng-indicator(t) ::=t = strip O “-”
t =clip 0O /* enpty */
t = keep 0O "+
62

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Thus, the final line break of a block scalar may be included or excluded from the content, depending on the specified
chomping indicator.

[168] b- chonped-last(t) ::=t = strip O b-strip-Iast
t =clip O b-keep-Iast
t = keep 0O b-keep-Iast

[169] b-strip-last ::= b-ignored-any

[170] b- keep-l ast ::= b-nornalized

Example 4.73. Chomping Final Line Break

strip: |- %rAML 1.1
text [1]
clip: | Htmap {
textil’ ? llstr "strip"
e : Ilstr "text",
keep: |+ ? Ilstr "clip”
text:U: : Ilstr "text\n",
? llstr "keep"
Legend: Ilstr "text\L",
b-strip-1Tast] }
b-Kkeep-Tast:

Similarly, empty linesimmediately following the block scalar may be interpreted either as presenting trailing line breaks
or as (empty) comment lines, depending on the specified chomping indicator.

[171] | - chonped-enpty(n,t) ::=t = strip O |-strip-enpty(n)

t =clip O I-strip-enpty(n)

t = keep 0O |-keep-enpty(n)
[172] | -strip-enpty(n) ::= (s-indent(<n) b-ignored-any)* |-trail-coments(n)?
[173] | - keep-empty(n) ::=l-enpty(n,literal)* I-trail-coments(n)?

Explicit comment lines may then follow. To prevent ambiguity, the first such comment line must be less indented than
the block scalar content. Additional comment lines, if any, are not so restricted.

[174]1 -trail -coments(n) ::= s-indent(<n) c-nb-coment-text b-ignored-any
| - comment *

63

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.74. Block Scalar Chomping

Strip UrAML 1.1

Comment s:
strip: |- Ilseq [

textq ? llstr "strip"
|:D o Ilstr "text",
= ? llstr "clip"
'_'.I#%% ______ »oIlstr "tex?\n",
c-#_comrents: ? Ilstr "keep"
E Ilstr "text\L\n",
clip: |]

textl
|j Legend:

% Keep [-strip-enpty(n)]

keep: |+
textQ

Hl

I._..'.'

L

Notethat if ablock scalar consists of only empty lines, then these lines are considered trailing lines and hence are affected
by chomping.

Example 4.75. Empty Scalar Chomping

strip: >- WAML 1.1
clip: > seq [.
? Hstr "strip”
o Ilstr ",
:k__ef:ep. I+ ? Ilstr "clip”
L I O
? llstr "keep"
Legend: ;o Ilstr "\n",
[-strip-enpty(n)]]

4.5.3. Block Scalar Styles

YAML provides two Block scalar styles, literal and folded. The block scalar content isis ended by aless-indented line or
the end of the characters stream.

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

45.3.1. Literal

Theliteral styleisthe simplest, most restricted and most readable scalar style. It is especially suitable for source code or
other text containing significant use of indicators, escape sequences and line breaks. In particular, literal content lines may
begin with atab or a“#” character.

[175] c-1 +literal (n) ::= c-b-block-header(literal,mt)
|-literal-content(n+mt)

Example 4.76. Literal Scalar

[| # Sinple block scalar!]| %rAML 1.1

Cliteral t oo

“ l l Seq [

_olexty: Iistr "literal\n\
\ttext\n"

Legend:]

Inside literal scalars, each non-empty line may be preceded by any number of empty lines. No processing is performed
on these lines except for stripping the indentation. In particular, such lines are never folded. Literal non-empty lines may
include only spaces, tabs, and other printable characters.

[176] | -nb-literal -text(n) ::=1-enpty(n, block)* s-indent(n) nb-char+
The line break following a non-empty inner literal line is normalized. Again, such line breaks are never folded.

[277]1-literal -inner(n) ::=1l-nb-literal-text(n) b-normalized

Example 4.77. Inner Literal Lines

I OYAML 1.1

Il'str "\nliteral\n\ntext\n"

T Titeral]

[-nb-Trteral-text(n)]

The line break following the final non-empty literal line is subject to chomping.

[178] 1 -literal -last(n,t) ::=1-nb-literal-text(n) b-chonped-Iast(t)

Trailing empty lines following the last literal non-empty line, if any, are also subject to chomping.

[179] 1 -literal -content(n,t) ::= (|-literal-inner(n)* I-literal-last(n,t))?
| -chonped-enpty(n,t)?

65

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.78. Last Literal Line

%rAML 1.1

I

Il'str "\nliteral\n\ntext\n"

--literal
,..:ll Legend:

Lo —Ab-TT Teral T ext ()]
—Text]]

i

"# Comment I-chonped-enmpty(n,t);

45.3.2. Folded

The folded style is similar to the literal style. However, unlike literal content, folded content is subject to (block) line
folding.

[180] c- | +f ol ded(n) ::= c-b-bl ock-header(fol ded, mt)
| -fol ded-content (ntmt)

Example 4.79. Folded Scalar

|> # Sinple folded scal ar | %WAML 1.1

Ilseq [
Ilstr "fol ded text\n\
\ttext\n"

Legend:

Linefolding allowslong content linesto be broken anywhere a single space character separates two non-space characters.

[181] s- nb-fol ded-1ine(n) ::= s-indent(n) ns-char nb-char*
[182] | - nb-f ol ded-1ines(n) ::= (s-nb-fol ded-1ine(n)
b-I-fol ded-any(n, fol ded))*
s-nb-fol ded- i ne(n)

66

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.80. Folded Lines

> %rAML 1.1
-fol ded! ---
-linel tiseq [_
= I'l'str "folded I|ine\n\
e next |ine\n\
- hext \ * bullet\n\
-line|t \' % list\n\
last line\n"
* bul | et]
* | st
Legend:
-last! [-nb-Tol ded-Tines(nj]
-linejl
Comment

Lines starting with white space characters (“ more indented” lines) are not folded. Note that folded scalars, like literal
scalars, may contain tab characters. However, any such characters must be properly indented using only space characters.

[183] b- | - spaced(n) ::= b-nornalized |-enpty(n,fol ded)*
[184] s- nb- spaced-text(n) ::= s-indent(n) s-white nb-char*
[185] | - nb-spaced-lines(n) ::= (s-nb-spaced-text(n) b-I-spaced(n))*

Example 4.81. Spaced Lines

s- nb- spaced-t ext (n)

> OYAML 1.1
f ol ded -
line Ilseq [

Ilstr "folded |ine\n\
next next |ine\n\
line \' * bullet\n\

\' * list\n\
[---* bullety |l ast line\n"
% list|]
| ast Legend:
line [-nb-spaced-Tines(n)]
Comrent

RenderX

67

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Folded content may start with either line type. If the content begins with a“more indented” line (starting with spaces), an
indentation indicator must be specified in the block header. Note that leading empty lines and empty lines separating lines
of adifferent type are never folded.

[186] | - nb-start-wi th-fol ded(n) | -enmpty(n, bl ock)* | -nb-fol ded-1i nes(n)

(b-normalized |-nb-start-wth-spaced(n))?
| -enmpty(n, bl ock)* | -nb-spaced-1|ines(n)

(b-normalized |-nb-start-with-folded(n))?
| -nb-start-wth-fol ded(n)

| I-nb-start-w th-spaced(n)

[187] | - nb-start-wi t h-spaced(n)

[188] | - nb-start-wi th-any(n) ::=

Example 4.82. Empty Separation Lines

> OYAML 1.1
f ol ded
line Ilseq [

Ilstr "folded |ine\n\
next next |ine\n\
linell \' * bullet\n\

o \' * list\n\
" x bul | et | last line\n
x| ist
o Legend:
| ast b-nornalized I -enpty(n,s):
line
Comrent

Thefinal line break, and trailing empty lines, if any, are subject to chomping and are never folded.

[189] | -f ol ded-content(n,t) ::= (|-nb-start-with-any(n) b-chonped-last(t))?

| -chonped-enpty(n,t)

Example 4.83. Final Empty Lines

> OorAML 1.1
f ol ded —
line Ilseq [

I'lstr "folded Iine\n\
next next |ine\n\
line \' * bullet\n\

\' * list\n\
* pul | et | ast |ine\n"
* |ist]
| ast Legend:
line[t] b-chonped-Tast(t])] 1 -chonped-enmpty(n, t):
il
Comrent

68

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

4.6. Collection Styles

Collection content can be presented in asingle flow style and asingle block style for each of the two collection kinds (sequence
and mapping). In addition, YAML provides severa in-line compact syntax forms for improved readability of common
special cases. In all cases, the collection style is a presentation detail and must not be used to convey content information.

A flow collection may be nested within ablock collection (flow-out context), nested within another flow collection (flow-
in context), or be a part of asimple key (flow-key context). Flow collection entries are separated by the “, ” indicator.

Thefina “, " may be ommitted. This does not cause ambiguity because flow collection entries can never be completely
empty.

[190] i n-flow(c) ::= flowout O flowin
flowin 0O flowin
flowkey O flow key

C
C
C

4.6.1. Sequence Styles

Sequence content is an ordered collection of sub-nodes. Comments may be interleaved between the sub-nodes. Sequences
may be presented in aflow style or ablock style. YAML provides compact notations for in-line nesting of a collection in
ablock sequence and for nesting a single pair mapping in a flow sequence.

4.6.1.1. Flow Sequences

Flow sequence content is denoted by surrounding “[7 and “] ” characters.
[191] c-f| ow sequence(n,c) ::= “[" s-separate(n,c)?
ns-s-fl ow seqg-inner(n,c)*
ns-s-flow seq-last(n,c)?
u] ”
Sequence entries are separated by a“, ” character.

[192] ns-s-fl owseqg-inner(n,c) ::= ns-s-flowseg-entry(n,c) “,” s-separate(n,c)?

Thefinal entry may omit the®, ” character. This does not cause ambiguity since sequence entries must not be completely
empty.

[193] ns-s-fl owseqg-last(n,c) ::= ns-s-flowseqg-entry(n,c)

69

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.84. Flow Sequence

................................

- [[]iinner, finner, 1] UYAML 1.1

R -7 -==
- [[]inner, {last T] 11 seq |

Ilseq [

Legend: I'l'str "inner",
[C-Sequence-start] [C- Sequence- end| Ilstr "inner"
ns-s-T1ow seq-inner(n,c):]
hs-s-T1ow seq-last(n,) Ilseq [

I'l'str "inner",
Ilstr "last",

1,
]

Any flow node may be used as a flow sequence entry. In addition, YAML provides a compact form for the case where a
flow sequence entry isamapping with asingle key: value pair, and neither the mapping node nor its single key node have
any properties specified.

[194] ns-s-fl owseg-entry(n,c) ::= (ns-flow node(n,in-flow(c))

s-separate(n,in-flowc))?)
| ns-s-flowsingle-pair(n,in-flow(c))

Example 4.85. Flow Sequence Entries

[WAM. 1.1
"doubl e
quoted'], [single t'seq [

: I'lstr "doubl e quoted",
quoted' |, I'lstr "single quoted",

pl ai n I'lstr "plain text",

text], [[nested]| Ilseq |
Singlel pair | | hstr Tnested,
] ! ' map {
? Ilstr "single"
Legend: : Ilstr "pair"
[ns-TTow node(n,)] }
ns-s-flow single-pair(n,c):]

4.6.1.2. Block Sequences

A block sequence is simply a series of entries, each presenting a single node.

[195] c- | - bl ock- sequence(n,c) ::= c-l-coments |-block-seqg-entry(n,c)+

70

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

Example 4.86. Block Sequence

bl ock: [# Bl ock

sequencel |
.- onel:
- two : threel:
Legend:

Each block sequence entry is denoted by aleading “ - ”

UWAML 1.1
'map {

? Ilstr

: Ilseq

I'lstr

I'lstr

"bl ock"

"one",

indicator, separated by spaces from the entry node.

[196] | - bl ock-seq-entry(n,c) ::= s-indent(seqg-spaces(n,c)) “-"
s-1 +bl ock-i ndent ed(seq- spaces(n, c), c)

Peopleread the”- ” character as part of theindentation. Hence, block sequence entries require one less space of indentation,
unless the block sequence is nested within another block segquence (hence the need for the block-in context and

block-out context).

[197] seq- spaces(n,c) ::=

o o0
I

O

bl ock-out O n-1
bl ock-in

n

Example 4.87. Block Sequence Entry Indentation

.............

Legend:

%rAML 1.1
'Mmap {

? I'lstr "bl ock"
Ilseq [
II'str "one",
Ilseq [

Istr "two"
]
]
}

The entry node may be either completely empty, a normal block node, or use a compact in-line form.

[198] s- | +bl ock-i ndented(n,c) ::=
I
I

s-1 -enpty-bl ock
s-1 +bl ock-node(n, c)
s-| +bl ock-in-1ine(n)

71

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

The compact in-line form may be used in the common case when the block sequence entry isitself ablock collection, and
neither the collection entry nor its first nested node have any properties specified. In this case, the nested collection may

be specified in the same line asthe “- ” character, and any following spaces are considered part of the in-line nested col-
lection's indentation.

[199] s- | +bl ock-in-1ine(n) ::= s-indent(nr0)
(ns-I-in-line-sequence(n+l1+n
| ns-1-in-1ine-mappi ng(n+1+m)

Anin-line block sequence begins with an indented same-line sequence entry, followed by optional additional normal block
sequence entries, properly indented.

[200] ns- 1| -i n-1i ne-sequence(n) ::= “-" s-|+bl ock-i ndent ed(n, bl ock-out)
| - bl ock-seqg-entry(n, bl ock-out)*

Example 4.88. Block Sequence Entry Types

OYAML 1.1
Ilseq [
Ilstr ™",
I'l'str "bl ock node\n",
Ilseq [
I'l'str "one",
I'l'str "two",
]
'map {

Legend: ? llstr "one"
[S-T-enpty-Dblock] I'l'str "two",
s-1+bl ock-node(n, c): }

§-17¥bl ock-1n-ITne(n];]

4.6.2. Mapping Styles

A mapping nodeis an unordered collection of key: value pairs. Of necessity, these pairs are presented in some order in the
characters stream. As a serialization detail, this key order is preserved in the serialization tree. However it is not reflected
in the representation graph and hence must not be used when constructing native data structures. It isan error for two equal
keysto appear inthe same mapping value. In such acasethe Y AML processor may continue, ignoring the second key: value

pair and issuing an appropriate warning. This strategy preserves a consistent information model for one-pass and random
access applications.

4.6.2.1. Flow Mappings

Flow mapping content is denoted by surrounding “{” and“}" characters.

[201] c- f | ow mappi ng(n,c) ::= “{” s-separate(n,c)?
ns-s-fl ow map-i nner(n,c)*
ns-s-fl ow nmap-1last(n,c)?

“y

72

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Mapping entries are separated by a“, ” character.

[202] ns-s-fl ow map-inner(n,c) ::= ns-s-flow map-entry(n,c) “,” s-separate(n,c)?

Thefina entry may omit the*“, " character. This does not cause ambiguity since mapping entries must not be compl etely
empty.

[203] ns-s-fl owmap-1last(n,c) ::= ns-s-flow map-entry(n, c)

Example 4.89. Flow M appings

- linner : entry , falso: inner , [}]||%WAM. 1.1
PR RS Moot Al - ---
inner: entry, {last : entry]| seq [
''ma
Legend: ? I!O!{str "inner"
[C-mappi ng- st art] [c- mappi ng- end| . Ilstr "entry",
ns-s-T1 ow map-inner(n, c): ? Ilstr "al so"
ns-s-T1 0w map-Tast(n,c); . Ilstr “inner"
H
'map {
? Ilstr "inner"
: Ilstr "entry",
? Illstr "last”
: Ilstr "entry"
}
]

Flow mappings alow two forms of keys: explicit and simple.
Explicit Keys An explicit key is denoted by the “ ?” indicator, followed by separation spaces.

[204] s- f | ow separated(n,c) ::= (s-separate(n,c) ns-flow node(n,in-flow(c))
s-separate(n,c)?)
| (e-enpty-flow s-separate(n,c))
[205] c-s-fl owexplicit-key(n,c) ::= “?" s-fl ow separated(n,c)

Simple Keys A simple key has no identifying mark. It is recognized as being a key either due to being inside aflow
mapping, or by being followed by an explicit value. Hence, to avoid unbound lookahead in YAML
processors, simple keysarerestricted to asingleline and must not span more than 1024 stream characters
(hencethe need for the flow-key context). Note the 1024 character limit isin terms of Unicode characters
rather than stream octets, and that it includes the separation following the key itself.

[206] ns-s-fl ow si npl e-key(n,c) ::= ns-fl ow node(n, fl ow key) s-fl ow separated(n,c)?

73

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Example 4.90. Flow M apping K eys

{ WrAML 1.1
[? | value # Enpty key
? explicit Ptmap {
? Mlstr
key _______________ . Ilstr "val ue",
:sinple key : value ? Ilstr "explicit key"
‘[collection, sinple, key]: value : !lstr "value",
Yo ? Ilstr "sinple key"
: Ilstr "val ue",
Legend: ? llseq [_
C-s-fTlow explicit-Key(n,c)] : : 2:; ;olrrlplegtl on
ns-s-flow sinple-key(n, c): st "key"
]
. Ilstr "val ue"
}
Example 4.91. Invalid Flow M apping Keys
{ ERROR:

mul ti-line

simpl e key| : val ue,
very Tong ... (>1KB). .. key: value
}

- Asinple key is restricted

to only |one line|

- A sinmple key nsut not be

...........

Flow mappings also allow two forms of values, explicit and completely empty.

Explicit Values

[207] c-s-fl owexplicit-value(n,c) ::="

Example 4.92. Flow Mapping Values

An explicit value is denoted by the“: ”

indicator, followed by separation spaces.

s-fl ow separat ed(n, c)

{
ey [val ue)

enpty|:° # enpty val uel |
}

Legend:
C-s-TTow explicit-value(n,c)]

%rAML 1.1

'map {

? llstr
I'l'str "val ue",
? llstr "enpty"

Ilstr ,

" keyll

74

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

Thus, there are four possible combinations for a flow mapping entry:
« Explicit key and explicit value:

[208] c-s-fl owexplicit-explicit(n,c) ::= c-s-flowexplicit-key(n,c)
c-s-flowexplicit-val ue(n,c)

« Explicit key and completely empty value:

[209] c-s-fl owexplicit-enpty(n,c) ::= c-s-flowexplicit-key(n,c) e-enpty-flow

e Simple key and explicit value;

[210] ns-s-fl ow si npl e-explicit(n,c) ::= ns-s-fl owsinple-key(n,c)
c-s-flowexplicit-val ue(n,c)

e Simple key and completely empty value:

[211] ns-s-fl owsi npl e-enpty(n,c) ::= ns-s-fl ow sinple-key(n,c) e-enpty-flow

Inside flow mappings, all four combinations may be used.

[212] ns-s-fl ow map-entry(n,c) ::= c-s-flowexplicit-explicit(n,c)
| c-s-flowexplicit-enpty(n,c)
| ns-s-flowsinple-explicit(n,c)
| ns-s-flowsinple-enpty(n,c)

Example 4.93. Flow Mapping Key: Value Pairs

{ O%rAML 1.1
|? explicit keyl : Explicit value],
— o C 'map {

? explicit key2 : , # Explicit enpt o
|p ye : | P Pty ? Ilstr "explicit keyl"
2explicit keys, | _# Empty value : Ilstr "explicit value",
sinple keyl : explicit value, ? Ilstr "explicit key2"
Simiekeyz Ul #Bmlicit emty || DSttt

simple keys, # Enpty val ue gy Rttt keys

} ? Ilstr "sinple keyl"

: Ilstr "explicit val ue",

Legend: ? llstr "sinple key2"

C-S-Tlowexplicit-explicit(n,c)] listr "

c-s-flow explicit-enpty(n, c): ? Ilstr "sinple key3"

hs-s-T1ow simple-explicit{n cy; Ilstr ""

ns-s-T1ow sinpl e-enpty(n,c); }

75

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax

YAML aso alows omitting the surrounding “{” and “} " characters when nesting a flow mapping in aflow sequence if
the mapping consists of asingle key: value pair and neither the mapping nor the key have any properties specified. In this
case, only three of the combinations may be used, to prevent ambiguity.

[213] ns-s-fl owsingl e-pair(n,c) ::= c-s-flowexplicit-explicit(n,c)

| c-s-flowexplicit-enpty(n,c)
| ns-s-flowsinple-explicit(n,c)

Example 4.94. Single Pair M appings

[%AML 1.1
|? explicit keyl : explicit value],

. o o Ilseq [
? explicit key2 : , # Explicit value
| P y | p ' nap {

Enpty val ue
'.‘““"_—_—"T _______________ l

explicit val ue

g J

Explicit enpty }
|

? Ilstr "explicit keyl"
Ilstr "explicit val ue",

'map {
? Illstr "explicit key2"
Legend: tistr '
c-s-flowexplicit-explicii(n,C)] ?;map{
s T 10wk expli ci L enpry(n,) . ol o "
ns—s= 1170w 51 mpl &= expl i Gt (1, ¢)! isr expliert key3
}1
'map {

? Ilstr "sinmple keyl"
Ilstr "explicit val ue",

4.6.2.2. Block Mappings

A Block mapping is simply a series of entries, each presenting akey: value pair.

[214] c- | - bl ock- mappi ng(n) ::= c-l-coments
(s-indent(n) ns-I-block-map-entry(n))+

Example 4.95. Block Mappings

bl ock: [# Bl ock UYAML 1.1
mappi ng! | "rrap ‘
CTreve val Uel 1 o
- {key: valuei; 2 I'lstr "bl ock”
'map {
Legend: Ilstr "key",
[C-T-coment g I'l'str "val ue"
s-indent(n): }
hs-I-block-map-entry(n) }
76

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

A block mapping entry may be presented using either an explicit or asimple key.

[215] ns- | - bl ock-map-entry(n) ::= ns-1-block-explicit-entry(n)
| ns-1-block-sinple-entry(n)

ExplicitKey Entries Explicit key nodes are denoted by the “?” character. YAML alows here the same inline compact
notation described above for block sequence entries, in which case the “?” character is considered
part of the key's indentation.

[216] ns- | - bl ock-explicit-key(n) ::= “?" s-1+bl ock-indented(n, bl ock-out)

* Inan explicit key entry, value nodes begin on a separate line and are denoted by by the “: " character. Here again
YAML alows the use of the inline compact notation which casethe “: " character is considered part of the values's
indentation.

[217]| - bl ock-explicit-value(n) ::= s-indent(n)
s-1 +bl ock-i ndent ed(n, bl ock- out)

e Anexplicit key entry may also use a completely empty value.
[218] ns- | - bl ock-explicit-entry(n) ::= ns-I-block-explicit-key(n)

(I-block-explicit-value(n)
| e-enpty-flow)

Example 4.96. Explicit Block Mapping Entries

[? explicit key # inplicit valuel]°: %rAML 1.1

5
II 'map {
blockkey1| ____________________________ ? Ilstr "explicit key"
i3 ;.one # explicit in-line tMhstr M,
- two # block valuel: ? Ilstr "block key\n"
"""""""""""""""""""""""""" : Ilseq [

. I'I'str "one",

Legend: Ilstr "two"

[NS-T-bl ock-explicit-key(nJ] '

T=Bl ock-explicit-value(n):]

SimpleKey Entries ' YAML allows the “?” character to be omitted for ssmple keys. Similarly to flow mapping, such a
key isrecognized by afollowing “: " character. Again, to avoid unbound lookahead in YAML pro-
cessors, simple keysarerestricted to asingleline and must not span more than 1024 stream characters.
Again, thislimit isin terms of Unicode charactersrather than stream octets, and includes the separation
following the key, if any.

[219] ns- bl ock- si npl e-key(n) ::= ns-flow node(n, fl ow key)
s-separate(n, bl ock-out)? *

77

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax

* Inasimple key entry, an explicit value node may be presented in the same line. Note however that in this case, the
key is not considered to be aform of indentation, hence the compact in-line notation must not be used. The value fol-
lowing the simple key may also be completely empty.

[220] s- | +bl ock- si npl e-val ue(n) ::= s-1+bl ock-node(n, bl ock-out)
| s-1-enpty-block
[221] ns- | - bl ock-si npl e-entry(n) ::= ns-bl ock-sinpl e-key(n)

s-1 +bl ock- si npl e- val ue(n)

Example 4.97. Simple Block Mapping Entries

plain key: |° # enpty valuel: %WAML 1.1

[quoted key":[. i {

:-::::(?:r:]:e:::ﬁ:::e::)fgll::i::c::i:;t::::r:]:e::)f;t"-"l"i"r']'e' ? ! ! St r " pl a-i n key"
- two # block valuel: - llstr "",
-- ? Ilstr "quoted key\n"
Legend: : Ilseq [

NS- bl ocK-si npl e- Key(n)] Ilstr "one",

$- 1 4Bl 0ck= ST ipl e~ val Ue() Hstr "twor,

An in-line block mapping begins with a same-line mapping entry, followed by optional additional normal block mapping
entries, properly indented.

[222] ns-| -i n-1i ne-mappi ng(n) ::= ns-1-bl ock-map-entry(n)
(s-indent(n) ns-I-block-map-entry(n))*

Example 4.98. In-Line Block M appings

- |sun: yellow | 9%WAML 1.1
- |? earth:_bruey
Ilseq {
[roon:_whi tel)| | map {
? I'lstr "sun"
Legend: : 1lstr "yellow',
NS-T-1n-11ne-nmappi ng(nJ] },
map {
? lmap {
? llstr "earth"
Ilstr "blue"
}
o imap {
? I'lstr "noon"
Ilstr "white"
}
}
}
78

http://www.w3.org/Style/XSL
http://www.renderx.com/

Terms Index

Indicators

I'locdl tag, 14, 39, 45

I named handle, 28, 40, 45

I non-specific tag, 18, 46

I tag indicator, 8, 23, 3940, 44

" double quoted style, 24, 29, 51, 54
comment, 5, 14, 23, 32, 57, 61, 65
% directive, 24, 37

% escaping in URI, 28, 45

& anchor, 5, 23, 44

' single quoted style, 24, 54

* dlias, 5, 23, 49

+ keep chomping, 62

, end flow entry, 22, 57, 69, 73

- block sequence entry, 4, 21, 31, 57, 71
- strip chomping, 62

: mapping value, 4, 21, 31, 57, 74, 77
<...>verbatimtag, 45

> folded style, 6, 24, 61

? mapping key, 6, 21, 31, 57, 73, 77
? non-specific tag, 18, 46

@ reserved indicator, 25

[start flow sequence, 22, 28, 57, 69

\ escaping in double quoted style, 28, 28-29, 51-54
] end flow sequence, 22, 28, 57, 69

" reserved indicator, 25

{ start flow mapping, 22, 57, 72

| literal style, 6, 24, 61

} end flow mapping, 22, 57, 72

A
alias
information model, 1-2, 5, 11, 14, 15, 17-19
syntax, 23, 44, 49
anchor
information model, 5, 11, 14, 15, 18-19
syntax, 23, 43-44, 44, 49
application, 1-2, 7-8, 10, 10-14, 19, 3940, 45, 72
availabletag, 19

B

block collection style
information model, 4, 6, 16
syntax, 32, 47, 69, 72

block mapping style
information model, 16
syntax, 58, 76

block scalar header, 60, 61

block scalar style

information model, 16
syntax, 27, 35, 51, 6061, 63-64, 64
block sequence style
information model, 4, 16
syntax, 21, 31-32, 69, 70, 77
block style
information model, 2, 6, 16, 19
syntax, 31, 36, 47, 50, 71
block-in context, 31, 71
block-out context, 31, 71
byte order mark, 21, 4243

C

canonical form, 2, 14, 17-18
character encoding, 21, 28, 42-43
chomping, 26, 31, 35-36, 62, 65, 68
clip chomping, 31, 62
collection
information model, 2, 12, 13, 14-15, 17-19
syntax, 32, 47, 58, 69, 72
comment
information model, 5, 11, 15, 17, 18
syntax, 23, 32, 33, 35, 37, 41-43, 50-51, 57, 60, 62-63,
69
complete representation, 18, 18-19, 46
completely empty node, 41, 50, 50-51, 69, 71, 7375, 7778
composg, 11, 15, 18-19, 44, 46
construct, 10, 11, 14, 18-19, 72
content
information model, 2, 11, 13, 14, 16-19, 26, 28, 31-34,
36, 4041, 44, 51, 69
syntax, 21, 31, 43, 47, 49-50, 52-53, 55-56, 59-64, 66,
68
context, 31, 57

D

directive

information model, 11, 15, 17

syntax, 24, 36, 37, 41-43
document

information model, 2, 5, 15, 16-17, 19

syntax, 21, 36-37, 3943, 41, 49
document boundary marker, 5, 15, 36, 40, 41-43, 58-59
double quoted style

information model, 2, 7, 16

syntax, 20, 24, 28, 31, 47, 51, 56
dump, 10

E

empty line, 2, 6, 32, 35, 35-36, 51, 60-65, 68

equality, 10, 12-14, 14, 17-19, 72

escaped (ignored) line break, 26, 52

escaping in double quoted style, 2, 7, 20, 28, 51-53, 65

79

http://www.w3.org/Style/XSL
http://www.renderx.com/

Terms Index

escaping in single quoted style, 54
escaping in URI, 14, 28, 45
explicit document, 41, 42-43
explicit key, 73, 77

explicit value, 74, 78

F

flow collection style
information model, 16
syntax, 20, 22, 31, 47, 57-58, 69
flow mapping style
information model, 4, 16
syntax, 22, 72
flow scalar style
information model, 7, 16
syntax, 36, 41, 47, 51, 58
flow sequence style
information model, 4, 16
syntax, 22, 69, 76
flow style
information model, 2, 4, 16
syntax, 31, 36, 47, 49, 50, 70
flow-in context, 31, 57, 69
flow-key context, 31, 69, 73
flow-out context, 31, 57, 69
folded style
information model, 6, 16
syntax, 24, 31, 36, 51, 61, 64, 66
format, 11, 14-15, 17

G

generic line break, 26, 29, 35-36
global tag, 2, 8, 11, 13, 18, 39, 45

I
identified, 5, 15, 18
identity, 14
ignored line prefix, 34, 53, 56, 59
ill-formed stream, 11, 17, 18
implicit document, 41, 42
in-line mapping style, 78
in-line sequence style, 72
in-line style
information model, 16
syntax, 32, 47, 69, 72, 77-78
indentation indicator, 61, 68
indentation space, 1-2, 4, 11-12, 16, 18, 20, 27, 30-34, 31,
36-37, 41, 47, 53, 56, 58, 61, 63-65, 67, 71-72, 77-78
indicator, 2, 4, 16, 21, 31-32, 36, 47, 50-51, 57, 60, 65
invalid content, 17, 19

K

keep chomping, 31, 62

key
information model, 1, 4, 6, 10-12, 13, 14-15, 18-19
syntax, 21, 57, 70, 72

key order, 11, 14, 15, 72

kind, 10-12, 13, 14, 16, 18-19, 47, 69

L
line break character, 2, 6-7, 20, 25, 26-27, 31, 35-36, 50, 52,
55, 59-60, 6263, 65, 68
line break normalization, 26, 65
linefolding, 2, 6-7, 35, 51-52, 55, 59, 62, 65-68
literal style
information model, 2, 6, 16
syntax, 24, 31, 51, 61, 64, 65, 6667
load, 10, 17
load failure point, 11, 17
local tag, 8, 11, 14, 18, 39, 45

M

mapping
information model, 1-2, 4, 10-12, 13, 14-15, 19
syntax, 69-70, 72

may, 3

more indented line, 6, 36, 67

must, 3

N

named tag handle, 28, 40, 45
need not, 3
node
information model, 5, 11-12, 13, 14-19
syntax, 31-32, 41, 43, 44, 46, 49, 69-72
node property, 41, 43, 49-50, 70, 72, 76
non-specific tag, 7, 11, 17, 18, 20, 46, 51

O
optional, 3

P
parse, 11, 15, 18-19, 26, 28, 40, 42-43, 45
partial representation, 17, 19
plain style
information model, 7, 16, 18-19
syntax, 31, 41, 46-47, 49, 51, 57
present, 10-11, 11, 13-15, 17, 19-20, 26, 28, 31, 36, 41, 44,
47, 49, 51, 59, 62—63, 6970, 72, 76-78
presentation, 10-12, 15, 41, 45
presentation detail, 11, 11-12, 15-18, 26, 28, 31-34, 36-37,
4041, 51, 62, 69
primary tag handle, 39, 45

80

http://www.w3.org/Style/XSL
http://www.renderx.com/

Terms Index

printable character, 1-2, 20, 28, 54-55, 59, 65 tag
processor, 3, 10, 10-11, 14-15, 17-21, 25-26, 37, 4041, 44— information model, 2, 8, 11-14, 13, 17-19, 40
45, 61, 7273, 77 syntax, 23, 28, 38-39, 43, 44
TAG directive, 14, 17, 37, 38, 45

Q tag handle, 8, 11, 38-39, 39, 45
quoted style tag prefix, 38, 45

information model, 7, 16, 19 tag resolution, 14, 17, 18, 20, 45-46, 51

syntax, 27, 47, 51 tag shorthand, 8, 20, 28, 3840, 45
R U
recognized tag, 19 unavailabletag, 11, 17, 19
recommended, 3 unidentified alias, 17, 18
represent, 1-2, 10, 13-15 unrecognized tag, 17, 19
representation, 1012, 12, 14-17, 19, 32, 37, 44-45, 62, 72~ unresolved teg, 17, 19
required, 3
reserved directive, 17, 37 V
reserved indicator, 25 valid content, 19
root node, 12, 18, 36, 41 value

information model, 1, 4, 6, 10, 13, 14-15, 18

S syntax, 21, 57, 72
scalar verbatim tag, 20, 45

information model, 1-2, 6, 10-12, 13, 14, 16-19

syntax, 25-28, 31-34, 47, 51, 57, 62, 65 W
secondary tag handle, 40 well-formed stream, 18
separation space, 27, 32, 33, 71, 73-74, 77 white space, 27, 34, 36, 52-53, 55-56, 67
sequence

information model, 1-2, 10, 12, 13, 14-15 Y

syntax, 69 YAML directive, 17, 37

seridization, 10-12, 14, 15-17, 32, 37, 44-45, 62, 72
seridization detail, 11, 15, 44, 72
seridize, 2, 11, 15, 49
shall, 3
should, 3
simplekey, 31, 33, 51-52, 54, 57-58, 69, 73, 77
single pair style
information model, 16
syntax, 69-70, 76
single quoted style
information model, 7, 16
syntax, 24, 31, 47, 51, 54, 59
specific line break, 25, 29, 35
specific tag, 18, 46
stream
information model, 2, 5, 10-11, 15, 17-19
syntax, 20-21, 30-31, 36, 3941, 42, 43, 50, 64, 72-73,
77
strip chomping, 31, 62
style, 11-12, 15, 16, 17-18, 41

T
tab, 2, 20, 27, 28, 31-34, 53, 56-57, 61, 65, 67

81

http://www.w3.org/Style/XSL
http://www.renderx.com/

	YAML Ain't Markup Language (YAML™) Version 1.1
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Prior Art
	1.3. Relation to XML
	1.4. Terminology

	Chapter 2. Preview
	2.1. Collections
	2.2. Structures
	2.3. Scalars
	2.4. Tags
	2.5. Full Length Example

	Chapter 3. Processing YAML Information
	3.1. Processes
	3.1.1. Represent
	3.1.2. Serialize
	3.1.3. Present
	3.1.4. Parse
	3.1.5. Compose
	3.1.6. Construct

	3.2. Information Models
	3.2.1. Representation Graph
	3.2.1.1. Nodes
	3.2.1.2. Tags
	3.2.1.3. Nodes Comparison

	3.2.2. Serialization Tree
	3.2.2.1. Keys Order
	3.2.2.2. Anchors and Aliases

	3.2.3. Presentation Stream
	3.2.3.1. Node Styles
	3.2.3.2. Scalar Formats
	3.2.3.3. Comments
	3.2.3.4. Directives

	3.3. Loading Failure Points
	3.3.1. Well-Formed and Identified
	3.3.2. Resolved
	3.3.3. Recognized and Valid
	3.3.4. Available

	Chapter 4. Syntax
	4.1. Characters
	4.1.1. Character Set
	4.1.2. Character Encoding
	4.1.3. Indicator Characters
	4.1.4. Line Break Characters
	4.1.5. Miscellaneous Characters
	4.1.6. Escape Sequences

	4.2. Syntax Primitives
	4.2.1. Production Parameters
	4.2.2. Indentation Spaces
	4.2.3. Comments
	4.2.4. Separation Spaces
	4.2.5. Ignored Line Prefix
	4.2.6. Line Folding

	4.3. YAML Character Stream
	4.3.1. Directives
	4.3.1.1. YAML Directive
	4.3.1.2. TAG Directive
	4.3.1.2.1. Tag Prefixes
	4.3.1.2.2. Tag Handles

	4.3.2. Document Boundary Markers
	4.3.3. Documents
	4.3.4. Complete Stream

	4.4. Nodes
	4.4.1. Node Anchors
	4.4.2. Node Tags
	4.4.3. Node Content
	4.4.4. Alias Nodes
	4.4.5. Complete Nodes
	4.4.5.1. Flow Nodes
	4.4.5.2. Block Nodes

	4.5. Scalar Styles
	4.5.1. Flow Scalar Styles
	4.5.1.1. Double Quoted
	4.5.1.2. Single Quoted
	4.5.1.3. Plain

	4.5.2. Block Scalar Header
	4.5.2.1. Block Style Indicator
	4.5.2.2. Block Indentation Indicator
	4.5.2.3. Block Chomping Indicator

	4.5.3. Block Scalar Styles
	4.5.3.1. Literal
	4.5.3.2. Folded

	4.6. Collection Styles
	4.6.1. Sequence Styles
	4.6.1.1. Flow Sequences
	4.6.1.2. Block Sequences

	4.6.2. Mapping Styles
	4.6.2.1. Flow Mappings
	4.6.2.2. Block Mappings

	Terms Index

