
Ruby - Feature #11911

Immutable method definitions and/or static dispatch

12/28/2015 06:17 PM - mlarraz (Matt Larraz)

Status: Feedback

Priority: Normal

Assignee:

Target version:

Description

One of Ruby's biggest strengths is the ability for anyone, at any time, to redefine (almost) any behavior. But this is also one of its

biggest weaknesses.

Ruby has a very liberal dynamic dispatch, so any method can be redefined anywhere in the code, meaning we can never have any

guarantees about behavior.

Other languages with dynamic dispatch (like C++ or Java) also allow for static dispatch. In particular, Java has dynamic dispatch by

default, with the final keyword marking a method as immutable.

In Ruby, this might look something like:

def foo

 'foo'

end

final :foo

Raises an exception

def foo

 'bar'

end

 I see this as analogous to freezing a string.

Note that if somebody really needs to overwrite an immutable method, they can still do so, just in a more explicit way:

undef_method :foo

Works as expected

def foo

 'bar'

end

 This eliminates some ambiguity.

I'm not sure how feasible this is (or whether this is the ideal syntax), but I'd like to hear what the community thinks of such a concept

in general.

History

#1 - 12/30/2015 12:41 AM - duerst (Martin Dürst)

- Status changed from Open to Feedback

Ruby's ability to change any method anytime, and C++/Java's ability to overwrite some methods in subclasses, are conceptionally quite different.

Which one are you interested in, and why? What is your use case?

#2 - 01/03/2016 07:04 AM - mlarraz (Matt Larraz)

I suppose I'm talking specifically about the first, that is, the ability to change any method at any time.

The most obvious use case I can imagine is an application that wants to guarantee that it's running the stock stdlib, with no monkey patches. Given a

large enough number of gems (or even files in the codebase itself), auditing all of them for monkey patches becomes expensive. Consistently auditing

all of them to ensure no monkey patches get introduced becomes cost-prohibitive. In such a case, it might also be convenient to have a

command-line flag that disables any modifications to the stdlib.

06/17/2025 1/2

As a highly contrived example, a malicious gem author could hide a monkey patch in the middle of his codebase, overwriting Kernel#puts to spy on all

of the application's output. There is presumably a non-negligible number of Ruby developers who would like to easily guard against something like

this.

Powered by TCPDF (www.tcpdf.org)

06/17/2025 2/2

http://www.tcpdf.org

