
Ruby - Bug #14541

Class variables have broken semantics, let's fix them

02/22/2018 11:47 AM - Eregon (Benoit Daloze)

Status: Closed

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

ruby -v: ruby 2.6.0dev (2018-01-29 trunk 62091)

[x86_64-linux]

Backport: 2.3: UNKNOWN, 2.4: UNKNOWN, 2.5:

UNKNOWN

Description

Class variables have the weird semantics of being tied to the class hierarchy and being inherited between classes.

I think this is counter-intuitive, dangerous and basically nobody expects this behavior.

To illustrate that, we can break the tmpdir stdlib by defining a top-level class variable:

$ ruby -rtmpdir -e '$SAFE=1; @@systmpdir=42; p Dir.mktmpdir {}'

-e:1: warning: class variable access from toplevel

Traceback (most recent call last):

 3: from -e:1:in `<main>'

 2: from /home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/tmpdir.rb:86:in `mktmpdir'

 1: from /home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/tmpdir.rb:125:in `create'

/home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/tmpdir.rb:125:in `join': no implicit conversion of I

nteger into String (TypeError)

 Or even simpler in RubyGems:

$ ruby -e '@@all=42; p Gem.ruby_version'

-e:1: warning: class variable access from toplevel

Traceback (most recent call last):

 3: from -e:1:in `<main>'

 2: from /home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/rubygems.rb:984:in `ruby_version'

 1: from /home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/rubygems/version.rb:199:in `new'

/home/eregon/prefix/ruby-trunk/lib/ruby/2.6.0/rubygems/version.rb:199:in `[]': no implicit convers

ion of String into Integer (TypeError)

 So defining a class variable on Object removes class variables in all classes inheriting from Object.

Maybe @@systmpdir is not so prone to conflict, but how about @@identifier, @@context, @@locales, @@sequence, @@all, etc

which are class variables of the standard library?

Moreover, class variables are extremely complex to implement correctly and very difficult to optimize due to the complex semantics.

In fact, none of JRuby, TruffleRuby, Rubinius and MRuby implement the "setting a class var on Object removes class vars in

subclasses".

It seems all implementations but MRI print :foo twice here (instead of :foo :toplevel for MRI):

class Foo

 @@cvar = :foo

 def self.read

 @@cvar

 end

end

p Foo.read

@@cvar = :toplevel

p Foo.read

 Is there any library actually taking advantage that class variables are inherited between classes? I would guess not or very few.

Therefore, I propose to give class variable intuitive semantics: no inheritance, they behave just like variables of that specific class,

much like class-level instance variables (but separate for compatibility).

Another option is to remove them completely, but that's likely too hard for compatibility.

06/17/2025 1/12

Thoughts?

Associated revisions

Revision 900e83b50115afda3f79712310e4cb95e4508972 - 04/10/2020 07:29 AM - jeremyevans (Jeremy Evans)

Turn class variable warnings into exceptions

This changes the following warnings:

warning: class variable access from toplevel

warning: class variable @foo of D is overtaken by C

into RuntimeErrors. Handle defined?(@@foo) at toplevel

by returning nil instead of raising an exception (the previous

behavior warned before returning nil when defined? was used).

Refactor the specs to avoid the warnings even in older versions.

The specs were checking for the warnings, but the purpose of

the related specs as evidenced from their description is to

test for behavior, not for warnings.

Fixes [Bug #14541]

Revision 900e83b50115afda3f79712310e4cb95e4508972 - 04/10/2020 07:29 AM - jeremyevans (Jeremy Evans)

Turn class variable warnings into exceptions

This changes the following warnings:

warning: class variable access from toplevel

warning: class variable @foo of D is overtaken by C

into RuntimeErrors. Handle defined?(@@foo) at toplevel

by returning nil instead of raising an exception (the previous

behavior warned before returning nil when defined? was used).

Refactor the specs to avoid the warnings even in older versions.

The specs were checking for the warnings, but the purpose of

the related specs as evidenced from their description is to

test for behavior, not for warnings.

Fixes [Bug #14541]

Revision 900e83b5 - 04/10/2020 07:29 AM - jeremyevans (Jeremy Evans)

Turn class variable warnings into exceptions

This changes the following warnings:

warning: class variable access from toplevel

warning: class variable @foo of D is overtaken by C

into RuntimeErrors. Handle defined?(@@foo) at toplevel

by returning nil instead of raising an exception (the previous

behavior warned before returning nil when defined? was used).

Refactor the specs to avoid the warnings even in older versions.

The specs were checking for the warnings, but the purpose of

the related specs as evidenced from their description is to

test for behavior, not for warnings.

Fixes [Bug #14541]

Revision 95dc9c07f3a895f45cfb5dab235cd78f157a9e51 - 06/18/2020 03:21 PM - jeremyevans (Jeremy Evans)

Raise RuntimeError for class variable overtaken in nonverbose mode

900e83b50115afda3f79712310e4cb95e4508972 changed from a warning

to an error in this case, but the warning was only issued in

verbose mode, and therefore the error was only raised in verbose

mode. That was not intentional, verbose mode should only change

whether warnings are emitted, not other behavior. This issues

the RuntimeError in all cases.

06/17/2025 2/12

This change broke a couple tests, as the tests actually issued

the warning and therefore now raise an error. This wasn't caught

earlier as test_variable suppressed the warning in this case,

effectively setting $VERBOSE = false around the code that warned.

basictest isn't run in verbose mode and therefore didn't expose

the issue previously. Fix these tests.

Fixes [Bug #14541]

Revision 95dc9c07f3a895f45cfb5dab235cd78f157a9e51 - 06/18/2020 03:21 PM - jeremyevans (Jeremy Evans)

Raise RuntimeError for class variable overtaken in nonverbose mode

900e83b50115afda3f79712310e4cb95e4508972 changed from a warning

to an error in this case, but the warning was only issued in

verbose mode, and therefore the error was only raised in verbose

mode. That was not intentional, verbose mode should only change

whether warnings are emitted, not other behavior. This issues

the RuntimeError in all cases.

This change broke a couple tests, as the tests actually issued

the warning and therefore now raise an error. This wasn't caught

earlier as test_variable suppressed the warning in this case,

effectively setting $VERBOSE = false around the code that warned.

basictest isn't run in verbose mode and therefore didn't expose

the issue previously. Fix these tests.

Fixes [Bug #14541]

Revision 95dc9c07 - 06/18/2020 03:21 PM - jeremyevans (Jeremy Evans)

Raise RuntimeError for class variable overtaken in nonverbose mode

900e83b50115afda3f79712310e4cb95e4508972 changed from a warning

to an error in this case, but the warning was only issued in

verbose mode, and therefore the error was only raised in verbose

mode. That was not intentional, verbose mode should only change

whether warnings are emitted, not other behavior. This issues

the RuntimeError in all cases.

This change broke a couple tests, as the tests actually issued

the warning and therefore now raise an error. This wasn't caught

earlier as test_variable suppressed the warning in this case,

effectively setting $VERBOSE = false around the code that warned.

basictest isn't run in verbose mode and therefore didn't expose

the issue previously. Fix these tests.

Fixes [Bug #14541]

History

#1 - 02/22/2018 11:49 AM - Eregon (Benoit Daloze)

To clarify, "setting a class var on Object removes class vars in subclasses" means:

Setting a class variable in some class removes class variables of the same name in all descendant classes of that class.

#2 - 02/22/2018 01:19 PM - shevegen (Robert A. Heiler)

I'd rather just remove them altogether. :P

However had, since I myself do not use them anyway, it is not really

important to me whether they are there or not - I only use a subset

of ruby which I like. I mostly store stuff that should be available

in a project in the main "namespace", such as module Foobar; end and

using accessors on "Foobar"; and "module-level instance variables"

as I call them, like:

module Foobar

 @use_colours = true

 def self.use_colours?

 @use_colours

 end

06/17/2025 3/12

 def self.disable_colours

 @use_colours = false

 end

end

 I also do not really need another way how to use @@class variables,

e. g. to act as a counter. I don't think I ever needed to have a

counter available to keep track of how many ruby instances are

created/instantiated of a given class.

Moreover, class variables are extremely complex to implement correctly

 Another reason to remove them. ;)

Is there any library actually taking advantage that class variables

are inherited between classes? I would guess not or very few.

 I think that class variables are not really used that much. I have

not done any analysis but my intuition tells me that most of the

highly used and popular gems available on rubygems.org do not use

them. Again, that is a statement not based on any statistics at all,

but I agree with your comment - I say none of the gems in the top

20 make use of @@variables. I'd even say that IF there were any use,

you could easily write code to NOT require them, too.

Another option is to remove them completely, but that's likely

too hard for compatibility.

 Oops, I just read your comment here. So you suggest removing too.

I agree with it as well. :)

Compatibility is important but ruby 3.x may make changes to code.

I think matz said so in one of the presentations, so removing

class variables would be a possibility for 3.x.

I do not know whether matz wants to remove them or not. But

perhaps it could be mentioned in the next ruby developer

meeting.

I think there may be quite many ruby hackers who would not have

any problem if @@class variables would be removed. Since I do

not have any of them in my code, removing class variables would

not impact me at all whatsoever. :)

I think perhaps it would be good to hear:

a) other ruby hackers who used ruby a lot, what they have to say

about @@class variables

and, perhaps even more importantly,

b) anyone who may still, for one reason or the other, use @@class

variables and how easy it may be for them to transition (I guess

it would be very simple because you can do everything without

class variables too, I think, in pure ruby, right? You only need

to be able to catch the event whenever a ruby object is instantiated

and I think that can be done via one of the hooks).

#3 - 02/22/2018 01:42 PM - Eregon (Benoit Daloze)

shevegen (Robert A. Heiler) wrote:

I'd rather just remove them altogether. :P

 That might be possible in Ruby 3, but unlikely in Ruby 2.x.

Even then, I don't think we want to break compatibility too much for Ruby 3.

I would rather see this fixed before Ruby 3.

There are currently 228 instances of "@@" in the standard library alone, so it seems that breaking those and many gems would be unbearable.

06/17/2025 4/12

Moreover, manually defining class-level instance variables with

class MyClass

 @classvar = :initial_value

 class << self

 attr_accessor :@classvar

 end

 def some_use_of_classvar

 MyClass.classvar ||= ...

 end

end

 is quite cumbersome, verbose and error-prone (to define the accessors on the singleton class).

So I think having the current class variables (@@) but with simple semantics would be convenient.

And I believe that would incidentally achieve what most of class variables usages in the wild expect (no inheritance, just state on the specific class).

#4 - 02/22/2018 02:16 PM - dsferreira (Daniel Ferreira)

Eregon (Benoit Daloze) wrote:

Moreover, manually defining class-level instance variables with

class MyClass

 @classvar = :initial_value

 class << self

 attr_accessor :@classvar

 end

 def some_use_of_classvar

 MyClass.classvar ||= ...

 end

end

 is quite cumbersome, verbose and error-prone (to define the accessors on the singleton class).

 This is one of those change requests that I have thought about for a long time already but didn't request it because I thought it would not be accepted.

I totally support it.

This kind of code example is kind of what I end up with (add private methods to it) in order to avoid all the quirks of current class variables.

Making class variables predictable by not giving them inheritance would be good but then how would we share state between the class hierarchy?

Using a top level class accessor? That works for me. Any situation where it would not apply?

Hope this can be accepted.

#5 - 03/09/2018 02:42 AM - shevegen (Robert A. Heiler)

This is one of those change requests that I have thought about for

a long time already but didn't request it because I thought it

would not be accepted.

 I may be wrong but I think that matz has indicated a possibility to

change the behaviour (for ruby 3.x, I assume, probably not in the

2.x branch). Perhaps it may not be accepted for 2.x, but I assume

that there may be a possibility for 3.x.

If I recall correctly - and this is mostly based on matz giving

presentations over the last ~4 years or so, also in particular

the one about "good change, bad change" - matz said that there was

pain/problems/complaints in regards to the change between ruby 1.8.x

and 1.9.x leading up towards 2.x and he wants to avoid that when

possible.

And this may be one of the primary reasons why some changes may not

happen too quickly, if only to not avoid breaking a lot of code.

Though matz has also said that ruby 3.x can make backwards incompatible

changes, so there may be a possibility to see @@variables revisited.

It's not on my personal list of very important things, since I do not

use them - but I otherwise agree with Benoit. :) I think the main

06/17/2025 5/12

thing is that @@variables do not really provide a huge, compelling

advantage over other means to write ruby code. At the least I have

not found a situation where I would miss @@variables - in the past

I misused CONSTANTS to store data, until I found out that I could

use @foo variables too and use setters/getters on the module/class

level. :D

I think what may be useful in regards to any possibility to revisit

@@variables is if other (more) ruby hackers could add to the tracker

here whether they use class variables; and what their usage pattern

is for them. So far it seems as if those who commented here, do not

really use/need them.

It may be that almost nobody uses them these days, I have no idea :) -

but in the event that some day @@variables may be changed or

removed, perhaps those who may be affected by it could comment; and

a transition path could be suggested for those who still use them.

Transition meaning such as a warning for deprecation and perhaps a

documentation explaining how to avoid having to use them or suggest

alternatives, in a doc at https://www.ruby-lang.org/en/. A bit

similar to the doc that explains the "Symbol versus String" situation

that has been added recently.

On the other hand, if not many ruby hackers complain about @@vars,

then perhaps this is an indication that class variables are not

really that much in use in the first place. In these cases, changing

or removing them may not affect many people. For example, to me the

two biggest problems from ruby 1.8.x and ruby versions past that

were the encoding situation and the yaml->psych transition. These

days I am not affected that much by either, but back then it was

a lot harder to transition. (I am also trying to stay up to date

when it comes to ruby versions, so the xmas releases systematically

replace my current ruby.)

The upcoming ruby developer meeting at:

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20180315Japan

will discuss it soon, so anyone who wants to chime in before

the meeting, please do so, no matter if you like or dislike,

use or don't use class variables.

#6 - 03/09/2018 07:18 AM - dsferreira (Daniel Ferreira)

shevegen (Robert A. Heiler) wrote:

A bit similar to the doc that explains the "Symbol versus String" situation that has been added recently.

 Can you please paste here the link to the “Symbol versus String” doc?

#7 - 03/09/2018 10:00 AM - Eregon (Benoit Daloze)

If changing class variables to no longer be inherited between classes is considered too hard for compatibility (but I'd like a real-world example),

how about at least removing the semantics that defining a class variable in a superclass removes class variables of the same name in all subclasses?

As said above, it seems no implementation but MRI implements that currently, showing how little Ruby code relies on that.

I argue it's also a very confusing behavior for the programmer, as illustrated by the examples in this bug description.

Defining a class variable at the top-level basically breaks encapsulation for all class variables of the same name, which sounds like something nobody

wants.

I do believe much simpler semantics for class variables without inheriting between classes is what most Ruby developers want,

and I would be interested to see if there is any Ruby code using class variable inheritance on purpose.

#8 - 03/15/2018 07:15 AM - matz (Yukihiro Matsumoto)

Although the use of class variables is not recommended (like global variables), proposed behavior changes introduce huge incompatibility.

Error-prone cases like above examples, we already give warnings.

"warning: class variable access from toplevel"

"warning: class variable @foo of D is overtaken by C"

So this so-called bug is a consequence of ignoring the warnings. Don't.

06/17/2025 6/12

https://www.ruby-lang.org/en/
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20180315Japan

It's possible to make those warning replaced by exceptions. I am strongly positive about it.

Matz.

#9 - 03/15/2018 12:24 PM - Eregon (Benoit Daloze)

matz (Yukihiro Matsumoto) wrote:

It's possible to make those warning replaced by exceptions. I am strongly positive about it.

 OK, at least that would remove the very confusing semantics of a class variable in a superclass removes class variables with the same name in

subclasses.

What exception class should be used? A RuntimeError?

FWIW, I tried removing the class hierarchy lookup for class variables.

Here is an incomplete patch, but it passes ruby/spec and almost test-all (a couple tests hang, I didn't have time to investigate those):

https://github.com/ruby/ruby/compare/master...eregon:classvar_not_inherited

CGI and Gem::TestCase seem to use class variables pretty much like global variables, so I replaced those with class-level instance variables.

I think it would be worth to merge those changes, regardless of what happens to class variables, since it makes the logic much clearer.

I hope I'll have time for it.

#10 - 03/15/2018 01:17 PM - Hanmac (Hans Mackowiak)

@Eregon (Benoit Daloze): the problem is the other way around ...

a class variable in a superclass DOES NOT removes class variables in subclasses.

BUT if you define the class variable in the superclass BEFORE the one is defined in the subclasses,

THEN the subclass will use the parent one instead

#11 - 03/15/2018 03:00 PM - Eregon (Benoit Daloze)

@Hanmac: Both problems exist, see the example in the description.

The semantics are confusing, that's why I wish we could simplify to avoid inheritance between class variables.

But, matz says it is too incompatible.

#12 - 10/08/2018 03:16 PM - jwmittag (Jörg W Mittag)

Hanmac (Hans Mackowiak) wrote:

@Eregon (Benoit Daloze): the problem is the other way around ...

a class variable in a superclass DOES NOT removes class variables in subclasses.

BUT if you define the class variable in the superclass BEFORE the one is defined in the subclasses,

THEN the subclass will use the parent one instead

 In addition to what Benoit said, there is another problem, namely that class definitions in Ruby are never "finished", so when talking about making

changes to classes, "before" and "after" doesn't even make sense. You could always add a variable to either a subclass or a subclass at any time!

#13 - 12/11/2018 06:24 PM - lamont (Lamont Granquist)

Inheritance of @@class variables is precisely what makes them useful, since they're truly one single global value.

And in addition to what matz points out rubocop has the Cop::Style::ClassVars warning.

As someone who manages a 10 year old, 250,000 line long ruby codebase, please don't remove them or change the semantics. The class variables

we have now in our project have often been around for 10 years and while in some purist sense they are all technical debt, they're not doing any harm

-- forcing me to have a flag day to fix them all would be a large waste of my time (some of them have been fixed as they've been found to be

problematic and/or the code in question simply got cleaned up as part of a larger refactoring pass).

#14 - 01/03/2019 03:26 PM - shevegen (Robert A. Heiler)

Inheritance of @@class variables is precisely what makes them useful,

since they're truly one single global value.

 You can always find pros/cons. Some will find a feature useful, others

06/17/2025 7/12

https://github.com/ruby/ruby/compare/master...eregon:classvar_not_inherited
https://bugs.ruby-lang.org/users/772
https://bugs.ruby-lang.org/users/772

will not. My personal opinion, for example, is that I find @@vars

largely unnecessary, so I don't use them in my own code; another smaller

reason is that I find the two @ not so elegant. Others may have another

opinion and already expressed so, e. g. at a developer meeting some

months ago - I think that will very often be the case where people have

different opinions. And ultimately matz decides and he already decided

and explained here, and elsewhere. :)

I can achieve "inheritance" via @instance variables and specifying

access to it via custom code too (well, methods), but I think it is not a very

strong argument to refer to it as what makes @@class variables that useful

to begin with, because ruby is so dynamic that inheritance and access-specifiers

aren't a very strict concept. For example, we can obtain and change variables at

"runtime" at any moment in ruby as-is, e. g. instance_variable_get/set

and so forth. Ruby is ultimately a "tool-box" of code and it has another concept

for both OOP but also how to interface with it (from the human side), compared

to, say, C++ and Java.

And in addition to what matz points out rubocop has the

Cop::Style::ClassVars warning.

 Rubocop, and neither the style guide, are not designing ruby though. It's great

that rubocop exists; and it is great that it can be of help keeping code bases

sane. But that is only one part - the other part is the design of ruby as such in

itself. The ruby parser can also be thought of some kind of "style guide", e. g.

what it enforces, or what warnings it will show, and so forth. It would be nice if

we could customize it a bit more in general when it comes to warnings/notifications,

a bit like rubocop - but keeping this simple, too. Rubocop can become a bit

complicated if you look at all the different cop-rules that projects can use. I

like simplicity too.

As someone who manages a 10 year old, 250,000 line long ruby

codebase, please don't remove them or change the semantics.

 I have been using ruby for a very, very, very long time but ... how

can you manage to write 250.000 lines of ruby code? I assume that

must have been written by more than one person.

The class variables we have now in our project have often been

around for 10 years and while in some purist sense they are all

technical debt, they're not doing any harm -- forcing me to have

a flag day to fix them all would be a large waste of my time

(some of them have been fixed as they've been found to be

problematic and/or the code in question simply got cleaned

up as part of a larger refactoring pass).

 I think you need not worry - matz already said that the incompatibility

issue is a real one, so it is super-unlikely that class variables will be changed; most

definitely not for ruby 3.0 but I think probably also not at a later time. So a

lot of this discussion here is mostly a purely hypothetical one. There have been

other ruby users who expressed that they use @@class vars and that they also

like them. There is no "wrong" use of code as such per se; people will use features

and functionality when it is made available.

I think very large code bases are always problematic, not just in regards to ruby

alone but in general.

Matz also mentioned several times in presentations that he wants to avoid changes

such as from ruby 1.8.x to (ultimately) ruby 2.0 as that was a pain point for quite a

few people. So I think when discussing it, we should mostly refer to this as a purely

theoretical discussion.

I would also like to propose to eventually close this particular issue here eventually

when eregon is ok with it - ideally before ruby 3.0 is released, simply to keep the

amount of issues a bit smaller. (We could always have another discussion in the

future after 3.0 but I think the chances for change here are quite low, and about

0% for ruby 3.0 anyway; possibly even 0% at a later time but who knows.)

By the way I also agree that it is not something that is hugely important from a

practical point of view - people who like class variables can use them; those

who don't like them can avoid them. Ultimately project owners can specify what

they need/accept in code bases that they maintain. I have a long list of ruby code

06/17/2025 8/12

I would reject - others may probably feel similar in a different way about ruby code

they find acceptable and code they don't. :) (I actually found that one of the biggest

problem is the lack of documentation and comments - some people never write

any comments and barely any documentation, and it is very often that code written

by them is either brilliant or totally awful. And in both cases comments/documentation

would help OTHER people immensely, if it is up-to-date and of high quality.)

#15 - 03/27/2020 10:52 PM - jeremyevans0 (Jeremy Evans)

matz (Yukihiro Matsumoto) wrote in #note-8:

Although the use of class variables is not recommended (like global variables), proposed behavior changes introduce huge incompatibility.

Error-prone cases like above examples, we already give warnings.

"warning: class variable access from toplevel"

"warning: class variable @foo of D is overtaken by C"

So this so-called bug is a consequence of ignoring the warnings. Don't.

It's possible to make those warning replaced by exceptions. I am strongly positive about it.

 I've submitted a pull request to convert the warnings into exceptions: https://github.com/ruby/ruby/pull/2987

#16 - 04/10/2020 05:36 AM - matz (Yukihiro Matsumoto)

Accepted. Let's see if it works out.

Matz.

#17 - 04/10/2020 07:29 AM - jeremyevans (Jeremy Evans)

- Status changed from Open to Closed

Applied in changeset git|900e83b50115afda3f79712310e4cb95e4508972.

Turn class variable warnings into exceptions

This changes the following warnings:

warning: class variable access from toplevel

warning: class variable @foo of D is overtaken by C

into RuntimeErrors. Handle defined?(@@foo) at toplevel

by returning nil instead of raising an exception (the previous

behavior warned before returning nil when defined? was used).

Refactor the specs to avoid the warnings even in older versions.

The specs were checking for the warnings, but the purpose of

the related specs as evidenced from their description is to

test for behavior, not for warnings.

Fixes [Bug #14541]

#18 - 06/11/2020 02:13 AM - jeremyevans0 (Jeremy Evans)

- Status changed from Closed to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

jeremyevans (Jeremy Evans) wrote in #note-17:

Applied in changeset git|900e83b50115afda3f79712310e4cb95e4508972.

Turn class variable warnings into exceptions

 @alanwu (Alan Wu) pointed out this this commit only raised for class variable overtaken in verbose mode, because previously the warning was only

issued in verbose mode. I've added a pull request to fix this and raise in all cases (https://github.com/ruby/ruby/pull/3210), but are we OK jumping

directly from verbose-mode warning in 2.7 to RuntimeError in 3.0, without issuing a non-verbose warning?

06/17/2025 9/12

https://github.com/ruby/ruby/pull/2987
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/900e83b50115afda3f79712310e4cb95e4508972
https://bugs.ruby-lang.org/issues/14541
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/900e83b50115afda3f79712310e4cb95e4508972
https://bugs.ruby-lang.org/users/16806
https://github.com/ruby/ruby/pull/3210

Note that the code that previously issued the warning and now raises the error is when accessing a class variable that is defined in both a superclass

and an included/prepended module.

#19 - 06/11/2020 02:43 AM - duerst (Martin Dürst)

jeremyevans0 (Jeremy Evans) wrote in #note-18:

but are we OK jumping directly from verbose-mode warning in 2.7 to RuntimeError in 3.0, without issuing a non-verbose warning?

 I think that's a bad idea, virtually in every case. Let's always do this step by step, i.e. issue a warning in all cases (even non-verbose).

#20 - 06/11/2020 10:44 PM - Eregon (Benoit Daloze)

As shown above, the warning is shown by default, so I think we can raise an exception:

$ ruby -rtmpdir -e '@@systmpdir=42'

-e:1: warning: class variable access from toplevel

#21 - 06/11/2020 10:52 PM - Eregon (Benoit Daloze)

Ah, but the "warning: class variable @@foo of D is overtaken by C" is only in verbose mode, I see.

I think nobody wants these semantics, so I would think the risk is extremely low.

class C

end

class D < C

 @@foo = 42

 def self.foo

 @@foo

 end

end

class C

 @@foo = 4

end

p D.foo

cvar.rb:8: warning: class variable @@foo of D is overtaken by C

=> 4

#22 - 06/11/2020 11:02 PM - Eregon (Benoit Daloze)

Correction, JRuby implemented it in 9.2.1.0:

https://github.com/jruby/jruby/issues/1554#issuecomment-389604892

It seems @headius (Charles Nutter) shares the opinion these semantics are what nobody wants.

Anyway, if people feel strongly it should be a always-on warning before it raises I'm OK with that.

I think it's not needed though, because about every use of that weird edge case is most likely an unintended bug.

#23 - 06/12/2020 01:57 PM - byroot (Jean Boussier)

I understand that backward compatibility concerns makes it very very improbable that such change would be implemented, but just to share.

I learned Ruby coming from Python, and I almost immediately got bit by the class variable semantic. Here's how they work in Python:

class A:

 foo = 1

 bar = 1

class B(A):

 bar = 2

print(A.foo) # => 1

print(A.bar) # => 1

print(B.foo) # => 1

print(B.bar) # => 2

 In short, they are inherited, but a subclass can only redefine a parent variable in its own scope, not rewrite it inside the parent scope. Just like

methods do in Ruby.

That's exactly the semantic Rails/ActiveSupport implements with class_attribute, and IMHO it makes so much more sense that the "true" class

variables behavior. Unfortunately since Rails piggy back on the method semantic to implement this (setting a variable define a method with the value

06/17/2025 10/12

https://github.com/jruby/jruby/issues/1554#issuecomment-389604892
https://bugs.ruby-lang.org/users/286
https://api.rubyonrails.org/classes/Class.html#method-i-class_attribute

in a closure) they are way slower than they could be if they were natively supported.

So I kind of wonder how much code would be actually broken by such change, or alternatively if there was a way to add that new behavior as a

distinct syntax (@$ or $@ perhaps? It seems ugly but I have no other ideas).

#24 - 06/14/2020 10:40 AM - Eregon (Benoit Daloze)

@byroot (Jean Boussier) Actually with the changes above, my understanding is there won't be any "overtaking" anymore (a superclass removing a

class var of the same name in subclasses).

I think this is actually how TruffleRuby and JRuby<9.2.1.0 implement them, class variables are never removed there (unless using

remove_class_variable).

So it should become the semantics you mention in one of 2.8/3.0/3.1.

#25 - 06/15/2020 09:26 AM - byroot (Jean Boussier)

@Eregon (Benoit Daloze) oh really?

It was my understanding that the change requested would keep the following behavior:

class A

 @@foo = 1

end

class B < A

 @@foo = 2 # actually writes in A

end

#26 - 06/15/2020 08:12 PM - Eregon (Benoit Daloze)

@byroot (Jean Boussier) you're right, that behavior is still there.

So when defining a class var in a parent after it's defined in a child class, then it already warned (and removed in the child) and now will raise.

But the reverse case, when setting in a child class after the parent class, then it just writes to the parent variable.

#27 - 06/16/2020 10:01 AM - byroot (Jean Boussier)

Ok, so it's not the semantic I mention, and it's still largely useless in my opinion.

#28 - 06/18/2020 08:50 AM - matz (Yukihiro Matsumoto)

I accept making overtaken warning into error in Ruby3.

Matz.

#29 - 06/18/2020 03:21 PM - jeremyevans (Jeremy Evans)

- Status changed from Assigned to Closed

Applied in changeset git|95dc9c07f3a895f45cfb5dab235cd78f157a9e51.

Raise RuntimeError for class variable overtaken in nonverbose mode

900e83b50115afda3f79712310e4cb95e4508972 changed from a warning

to an error in this case, but the warning was only issued in

verbose mode, and therefore the error was only raised in verbose

mode. That was not intentional, verbose mode should only change

whether warnings are emitted, not other behavior. This issues

the RuntimeError in all cases.

This change broke a couple tests, as the tests actually issued

the warning and therefore now raise an error. This wasn't caught

earlier as test_variable suppressed the warning in this case,

effectively setting $VERBOSE = false around the code that warned.

basictest isn't run in verbose mode and therefore didn't expose

the issue previously. Fix these tests.

Fixes [Bug #14541]

#30 - 06/26/2020 03:56 PM - Dan0042 (Daniel DeLorme)

Since it's an error in 3.0, shouldn't it be made a non-verbose warning in 2.7?

#31 - 07/16/2020 08:36 AM - Eregon (Benoit Daloze)

06/17/2025 11/12

https://bugs.ruby-lang.org/users/7941
https://bugs.ruby-lang.org/users/772
https://bugs.ruby-lang.org/users/7941
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/95dc9c07f3a895f45cfb5dab235cd78f157a9e51
https://bugs.ruby-lang.org/issues/14541

Note that while setting a top-level immediately raises:

$ ruby -e '@@a=42'

-e:1:in `<main>': class variable access from toplevel (RuntimeError)

 Overtaking a class variable only raises on read (because of how class variable lookup is done on MRI, always look all ancestors without caching):

$ ruby -e 'class C; end; class CC<C; @@a=:CC; end; class C; @@a=:C; end; p :OK'

:OK

$ ruby -e 'class C; end; class CC<C; @@a=:CC; end; class C; @@a=:C; end; class CC; p @@a; end'

-e:1:in `<class:CC>': class variable @@a of CC is overtaken by C (RuntimeError)

 from -e:1:in `<main>'

#32 - 12/20/2020 07:31 PM - ko1 (Koichi Sasada)

- Status changed from Closed to Assigned

Why not NameError instead of RuntimeError?

#33 - 12/21/2020 05:56 PM - ko1 (Koichi Sasada)

- Status changed from Assigned to Closed

ko1 (Koichi Sasada) wrote in #note-32:

Why not NameError instead of RuntimeError?

 Matz answered that "the name is not wrong, so NameError is not for this purpose".

Also he thought RuntimeError is still strange, but there is no other good option.

So let's remaining it as is.

Powered by TCPDF (www.tcpdf.org)

06/17/2025 12/12

http://www.tcpdf.org

