
Ruby - Bug #15933

OpenURI: Assign default charset for HTTPS as well as HTTP

06/17/2019 07:14 PM - gareth (Gareth Adams)

Status: Closed

Priority: Normal

Assignee: akr (Akira Tanaka)

Target version:

ruby -v: Backport: 2.4: UNKNOWN, 2.5: UNKNOWN, 2.6:

UNKNOWN

Description

Using open-uri to load a document in the following circumstances:

The Content-Type header is text/* and doesn't specify a charset, e.g. Content-Type: text/csv

The document is loaded from an https:// URL

…will cause the resulting string to have ASCII-8BIT encoding.

As the documentation for OpenURI#charset mentions, RFC2616/3.7.1 says:

When no explicit charset parameter is provided by the sender, media subtypes of the "text" type are defined to have a default

charset value of "ISO-8859-1" when received via HTTP.

 OpenURI takes this literally - only assigning ISO-8859-1 if @base_uri.scheme is exactly "http". This check was written 17 years ago

in 2002 even before TLS 1.1 was defined, and well before HTTPS was common.

I believe this check should now also match the scheme "https". As RFC2818/2 says:

Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS precisely as you would use HTTP over TCP

1. Is this a suitable change to make?

2. I have a patch to fix the functionality (attached). What else do I need to specify in terms of documentation/tests? I'm happy to

put more work into this, but it's my first contribution to Ruby core and I'd like some pointers. I've read through

https://bugs.ruby-lang.org/projects/ruby/wiki/HowToReport

Associated revisions

Revision 8f7884761e30c453287d73de6ea733d565635ebc - 07/15/2019 12:36 AM - akr (Akira Tanaka)

The default charset of text/* media type is UTF-8.

Thanks for the patch gareth (Gareth Adams). [Bug #15933]

Combines two small, but very related changes

1: Treat HTTPS the same as HTTP

Previously, OpenURI followed guidance in RFC2616/3.7.1:

When no explicit charset parameter is provided by the sender, media

subtypes of the "text" type are defined to have a default charset

value of "ISO-8859-1" when received via HTTP.

 However this RFC was written before TLS was established and OpenURI was

never updated to treat HTTPS traffic the same way. So, HTTPS documents

received a different default to HTTP documents.

This commit removes the scheme check so that all text/* documents

06/20/2025 1/6

https://github.com/ruby/ruby/blob/trunk/lib/open-uri.rb#L538-L560
https://tools.ietf.org/html/rfc2616#section-3.7.1
https://github.com/ruby/ruby/commit/3a20ed532b57da1e58287a5c53abe14400a085f4#diff-0f19cb99597e5fb90bfb937b22143b51R264
https://tools.ietf.org/html/rfc2818#section-2
https://bugs.ruby-lang.org/projects/ruby/wiki/HowToReport

processed by OpenURI are treated the same way.

In theory this processing gets applied to FTP URIs too, but there's no

mechanism in OpenURI for FTP documents to have Content-Type metadata

appended to them, so this ends up being a no-op.

2: Change default charset for text/* to UTF-8

Replaces the default ISO-8859-1 charset previously defined in RFC2616 (now

obsoleted) with a UTF-8 charset as defined in RFC6838.

Fixes: https://bugs.ruby-lang.org/issues/15933

Revision 8f7884761e30c453287d73de6ea733d565635ebc - 07/15/2019 12:36 AM - akr (Akira Tanaka)

The default charset of text/* media type is UTF-8.

Thanks for the patch gareth (Gareth Adams). [Bug #15933]

Combines two small, but very related changes

1: Treat HTTPS the same as HTTP

Previously, OpenURI followed guidance in RFC2616/3.7.1:

When no explicit charset parameter is provided by the sender, media

subtypes of the "text" type are defined to have a default charset

value of "ISO-8859-1" when received via HTTP.

 However this RFC was written before TLS was established and OpenURI was

never updated to treat HTTPS traffic the same way. So, HTTPS documents

received a different default to HTTP documents.

This commit removes the scheme check so that all text/* documents

processed by OpenURI are treated the same way.

In theory this processing gets applied to FTP URIs too, but there's no

mechanism in OpenURI for FTP documents to have Content-Type metadata

appended to them, so this ends up being a no-op.

2: Change default charset for text/* to UTF-8

Replaces the default ISO-8859-1 charset previously defined in RFC2616 (now

obsoleted) with a UTF-8 charset as defined in RFC6838.

Fixes: https://bugs.ruby-lang.org/issues/15933

Revision 8f788476 - 07/15/2019 12:36 AM - akr (Akira Tanaka)

The default charset of text/* media type is UTF-8.

Thanks for the patch gareth (Gareth Adams). [Bug #15933]

Combines two small, but very related changes

1: Treat HTTPS the same as HTTP

Previously, OpenURI followed guidance in RFC2616/3.7.1:

When no explicit charset parameter is provided by the sender, media

subtypes of the "text" type are defined to have a default charset

value of "ISO-8859-1" when received via HTTP.

 However this RFC was written before TLS was established and OpenURI was

never updated to treat HTTPS traffic the same way. So, HTTPS documents

received a different default to HTTP documents.

This commit removes the scheme check so that all text/* documents

processed by OpenURI are treated the same way.

In theory this processing gets applied to FTP URIs too, but there's no

06/20/2025 2/6

https://bugs.ruby-lang.org/issues/15933
https://bugs.ruby-lang.org/issues/15933

mechanism in OpenURI for FTP documents to have Content-Type metadata

appended to them, so this ends up being a no-op.

2: Change default charset for text/* to UTF-8

Replaces the default ISO-8859-1 charset previously defined in RFC2616 (now

obsoleted) with a UTF-8 charset as defined in RFC6838.

Fixes: https://bugs.ruby-lang.org/issues/15933

History

#1 - 06/17/2019 08:40 PM - jeremyevans0 (Jeremy Evans)

- Status changed from Open to Assigned

- Assignee set to akr (Akira Tanaka)

I think this change makes sense and the patch is the simplest way to implement it.

#2 - 06/17/2019 11:44 PM - phluid61 (Matthew Kerwin)

A lot of those quoted specs are very, very old, and in some cases obsoleted by newer specs.

HTTP/1.1 Semantics and Content RFC7231/B:

The default charset of ISO-8859-1 for text media types has been

removed; the default is now whatever the media type definition says.

 Text Media Types RFC6838/4.2.1:

If a "charset" parameter is specified, it SHOULD be a required

parameter, eliminating the options of specifying a default value. If

there is a strong reason for the parameter to be optional despite

this advice, each subtype MAY specify its own default value, or

alternatively, it MAY specify that there is no default value.

Finally, the "UTF-8" charset [RFC3629] SHOULD be selected as the

default. See [RFC6657] for additional information on the use of

"charset" parameters in conjunction with subtypes of text.

Regardless of what approach is chosen, all new text/* registrations

MUST clearly specify how the charset is determined; relying on the

US-ASCII default defined in Section 4.1.2 of [RFC2046] is no longer

permitted. If explanatory text is needed, this SHOULD be placed in

the additional information section of the registration.

 Most current text/csv spec RFC7111/5.1

The "charset" parameter specifies the charset employed by the CSV

content. In accordance with RFC 6657 [RFC6657], the charset

parameter SHOULD be used, and if it is not present, UTF-8 SHOULD

be assumed as the default (this implies that US-ASCII CSV will

work, even when not specifying the "charset" parameter). Any

charset defined by IANA for the "text" tree may be used in

conjunction with the "charset" parameter.

 So it seems if you're making a change, it should be: ignore the protocol, and default to UTF-8 for text/csv.

#3 - 06/17/2019 11:58 PM - phluid61 (Matthew Kerwin)

phluid61 (Matthew Kerwin) wrote:

So it seems if you're making a change, it should be: ignore the protocol, and default to UTF-8 for text/csv.

 Or rather: ignore the protocol; and consult the IANA registry to see what the individual text/... types have as their default, and use UTF-8 as a final

fallback. Which is unpleasant.

#4 - 06/18/2019 08:13 AM - gareth (Gareth Adams)

Thanks Matthew,

I've now paid more attention to which RFCs are obsolete and which are still active.

06/20/2025 3/6

https://bugs.ruby-lang.org/issues/15933
https://tools.ietf.org/html/rfc7231#appendix-B
https://tools.ietf.org/html/rfc6838#section-4.2.1
https://tools.ietf.org/html/rfc7111#section-5.1

phluid61 (Matthew Kerwin) wrote:

So it seems if you're making a change, it should be: ignore the protocol, and default to UTF-8 for text/csv.

 Or rather: ignore the protocol; and consult the IANA registry to see what the individual text/... types have as their default, and use UTF-8 as a

final fallback. Which is unpleasant.

 The IANA registry isn't in a machine readable format, and so even if it were acceptable to depend on a gem like mime-types-data as a curated source

of these values (I realise stdlib can't depend on gems), that data isn't currently available.

Looking through the registry manually, most text subtypes make no mention of a charset (either because they predate RFC6838 or because its

recommendation to make charset required wasn't enforced) or specify UTF-8 explicitly. Only 5 (by my reading) mention a required charset parameter

that is different to UTF-8, and in my opinion none of these are incompatible with using UTF-8 as a default.

text/sgml: specifies US-ASCII, but references an obsoleted RFC [RFC1521] to justify that.

text/troff: specifies US-ASCII, but cites "this will be the default 'US-ASCII'" and this specification predates RFC6838 which changed the default to

UTF-8.

text/uri-list: See below.

text/vnd.a: specifies UTF-8 only "if 8 bit bytes are encountered" US-ASCII otherwise.

text/vnd.si.uricatalogue [obsoleted by author request]: specifies US-ASCII always.

The uri-list registration states (as of 1999):

Currently, URIs can be represented using US-ASCII. However, there

are many non-standard URIs which use special character sets.

Discussion of how to best achieve internationalization of URIs is

underway. This registration will be updated with a discussion of the

URI charsets once that discussion has concluded.

 The registration was not updated, despite IRIs being defined in RFC3987 to use UTF-8 or the ASCII transformation Punycode in 2005.

It seems to me that changing the default to UTF-8 and extending the check to match "https" URIs is:

Correct in all cases except for a minuscule number of edge cases

Compatible in all of those other cases

Overridable by defining exceptions inline (as opposed to using a dependency like mime-types-data) if anyone raises issues with this default

My suggestion that we could override it (e.g. with a Hash of subtype => default_charset) is just as a contingency. There's no need to at the moment,

and since this hasn't needed to be changed in nearly 20 years I'm not worried that this is a volatile piece of code.

If there are no objections, I'll follow up with a replacement patch using this as a plan.

#5 - 06/18/2019 09:24 AM - phluid61 (Matthew Kerwin)

gareth (Gareth Adams) wrote:

The IANA registry isn't in a machine readable format, and so even if it were acceptable to depend on a gem like mime-types-data as a curated

source of these values (I realise stdlib can't depend on gems), that data isn't currently available.

 The entire registry is available as XML and each individual registry is available as (ironically) text/csv; e.g.

https://www.iana.org/assignments/media-types/text.csv

That said, I agree in principle with pretty much everything else you've said.

It seems to me that changing the default to UTF-8 and extending the check to match "https" URIs is:

Correct in all cases except for a minuscule number of edge cases

Compatible in all of those other cases

Overridable by defining exceptions inline (as opposed to using a dependency like mime-types-data) if anyone raises issues with this default

 I would suggest ignoring the scheme altogether. Like:

diff a/lib/open-uri.rb b/lib/open-uri.rb

--- a/lib/open-uri.rb

+++ b/lib/open-uri.rb

@@ -552,7 +552,6 @@ def charset

 elsif block_given?

 yield

- elsif type && %r{\Atext/} =~ type &&

- @base_uri && /\Ahttp\z/i =~ @base_uri.scheme

06/20/2025 4/6

https://www.iana.org/assignments/media-types/media-types.xhtml#text
https://github.com/mime-types/mime-types-data
https://www.iana.org/assignments/media-types/text/uri-list
https://www.w3.org/International/articles/idn-and-iri/
https://tools.ietf.org/html/rfc3987
https://www.iana.org/assignments/media-types/media-types.xhtml#text
https://github.com/mime-types/mime-types-data
https://www.iana.org/assignments/media-types/media-types.xml
https://www.iana.org/assignments/media-types/text.csv

- "iso-8859-1" # RFC2616 3.7.1

+ elsif type && %r{\Atext/} =~ type

+ "utf-8" # RFC6838 4.2.1

 else

 nil

 Cheers

#6 - 06/18/2019 12:02 PM - gareth (Gareth Adams)

phluid61 (Matthew Kerwin) wrote:

The entire registry is available as XML and each individual registry is available as (ironically) text/csv; e.g.

https://www.iana.org/assignments/media-types/text.csv

 Sorry, I wasn't clear. Yes the registry itself is in XML/CSV – that's what the mime_types_data gem uses to build its dataset – but it doesn't include

"default charset parameter" or even details of which parameters are required, so that has to be manually parsed out of the RFC/MIME registration.

That's exactly what I did to get that shortlist of "conflicts" above.

I assumed your suggestion to "ignore the protocol; and consult the IANA registry" meant "at runtime" and I was clarifying that there was no way for

that to be possible. If you didn't mean that (which was probably the more obvious way to look at it) then there's no problem at all.

I would suggest ignoring the scheme altogether

 I'm happy to do this, the only other case that's handled in this file is an ftp:// URI and the FTP parsing here doesn't have any way to extract metadata

from the transferred file. Specifically it doesn't perform any file-extention-to-mime-type mapping, doesn't parse a content type, and so FTP URLs can't

hit this branch of the code.

Thanks

#7 - 06/19/2019 12:59 PM - gareth (Gareth Adams)

- File ruby-changes.patch added

Updated patch attached

#8 - 06/27/2019 05:43 PM - gareth (Gareth Adams)

- File ruby-changes-combined.patch added

HowToContribute suggests that I can ping this ticket if it looks like it's been missed - there was some good discussion for a couple of days and then

nothing since.

It's a small (+4 -5) change if anyone can weigh in.

The previous patch had it in two separate tiny commits but in case it's better, this patch is combined into one.

#9 - 07/15/2019 12:38 AM - akr (Akira Tanaka)

- Status changed from Assigned to Closed

Applied in changeset git|8f7884761e30c453287d73de6ea733d565635ebc.

The default charset of text/* media type is UTF-8.

Thanks for the patch gareth (Gareth Adams). [Bug #15933]

Combines two small, but very related changes

1: Treat HTTPS the same as HTTP

Previously, OpenURI followed guidance in RFC2616/3.7.1:

When no explicit charset parameter is provided by the sender, media

subtypes of the "text" type are defined to have a default charset

value of "ISO-8859-1" when received via HTTP.

 However this RFC was written before TLS was established and OpenURI was

06/20/2025 5/6

https://www.iana.org/assignments/media-types/media-types.xml
https://www.iana.org/assignments/media-types/text.csv
https://bugs.ruby-lang.org/projects/ruby/wiki/HowToContribute
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/8f7884761e30c453287d73de6ea733d565635ebc
https://bugs.ruby-lang.org/issues/15933

never updated to treat HTTPS traffic the same way. So, HTTPS documents

received a different default to HTTP documents.

This commit removes the scheme check so that all text/* documents

processed by OpenURI are treated the same way.

In theory this processing gets applied to FTP URIs too, but there's no

mechanism in OpenURI for FTP documents to have Content-Type metadata

appended to them, so this ends up being a no-op.

2: Change default charset for text/* to UTF-8

Replaces the default ISO-8859-1 charset previously defined in RFC2616 (now

obsoleted) with a UTF-8 charset as defined in RFC6838.

Fixes: https://bugs.ruby-lang.org/issues/15933

Files

ruby-changes.patch 1.21 KB 06/17/2019 gareth (Gareth Adams)

ruby-changes.patch 3.05 KB 06/19/2019 gareth (Gareth Adams)

ruby-changes-combined.patch 2.24 KB 06/27/2019 gareth (Gareth Adams)

Powered by TCPDF (www.tcpdf.org)

06/20/2025 6/6

https://bugs.ruby-lang.org/issues/15933
http://www.tcpdf.org

