
Ruby - Bug #1853

Cannot make constants using upper-case extended characters?

08/01/2009 05:00 PM - candlerb (Brian Candler)

Status: Rejected

Priority: Normal

Assignee:

Target version:

ruby -v: ruby 1.9.2dev (2009-07-18 trunk 24186)

[i686-linux]

Backport:

Description

=begin

SCHÖN = 1 # constant

=> 1

ÜBER = 2 # local variable!

=> 2

self.class.constants.grep(/SCH|BER/)

=> [:SCHÖN]

local_variables.grep(/SCH|BER/)

=> [:ÜBER]

I am not sure from the source code whether this is intentional or not.

In parse.c it uses rb_enc_isupper which understands encodings:

 else if (rb_enc_isupper(m[0], enc)) {

 id = ID_CONST;

 }

 else {

 id = ID_LOCAL;

 This is in rb_intern3. And yet it is called from rb_intern2 which says:

ID

rb_intern2(const char *name, long len)

{

return rb_intern3(name, len, rb_usascii_encoding());

}

If this is intentional, it seems like an arbitrary restriction. Unicode characters are unambiguously classified into upper-case,

lower-case and neither. If they can be used anywhere within an identifier, why not at the start of a constant?

=end

History

#1 - 08/01/2009 05:35 PM - runpaint (Run Paint Run Run)

=begin

If this is intentional, it seems like an arbitrary restriction. Unicode characters are unambiguously

classified into upper-case, lower-case and neither. If they can be used anywhere within an

identifier, why not at the start of a constant?

 I believe it is intentional as per the discussion in

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/19378 . As

matz wrote in that thread, to change this behaviour would be to make

the semantics of the program locale dependent. Plus, outside of

regexes, Ruby doesn't really grok concepts like Unicode properties

yet.

=end

06/12/2025 1/3

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/19378

#2 - 08/01/2009 05:50 PM - candlerb (Brian Candler)

=begin

Thank you for the link. (I'm in the process of documenting some of this).

We may be at cross-purposes over terminology, but when you say "to change this behaviour would be to make the semantics of the program locale

dependent", do you mean that the behaviour of an individual Encoding may be locale-dependent? If so, that's new to me.

After all, when I put

Encoding: UTF-8

at the top of my source, then the source encoding is fixed at UTF-8. So what I'm asking is, does the behaviour of Encoding::UTF_8 (e.g. which

characters are considered upper-case) vary at run-time dependent on the program's locale, in the sense of setlocale(3)? I'd like to see an example.

Until now, I was under the impression that each Encoding had fixed behaviour, and the locale-dependent behaviour arose from

Encoding.default_external pointing to different Encodings based on the locale.

=end

#3 - 08/03/2009 05:10 PM - runpaint (Run Paint Run Run)

=begin

Thank you for the link. (I'm in the process of documenting some of this).

 Documentation is sorely needed in this area, so that sounds wonderful.

:-) (Look at http://blog.grayproductions.net/categories/character_encodings

and http://yokolet.blogspot.com/2009/07/design-and-implementation-of-ruby-m17n.html

if you haven't already).

We may be at cross-purposes over terminology, but when you say "to change this behaviour

would be to make the semantics of the program locale dependent", do you mean that the

behaviour of an individual Encoding may be locale-dependent?

 I believe all that matz meant is that the definition of constants

would depend on the script encoding, which may be set externally, i.e.

via -K, the shebang, or the system locale if the source comes from

STDIN or via -e. How much of a problem this would be practically, I'm

unsure.

-Run Paint Run Run

=end

#4 - 08/25/2009 03:15 PM - duerst (Martin Dürst)

=begin

Sorry to comment on a very old post, just back from vacation recently.

I think saying that program behavior depends on locale wasn't exactly

accurate. The problem is that for UTF-8 as a program encoding, there is

quite some information available about e.g. upper/lower case characters,

but this information isn't available for all other encodings, so

anything else than the current "upper case for Ruby identifiers means

ASCII upper case" could lead to nasty surprises.

Regards, Martin.

On 2009/08/01 17:50, Brian Candler wrote:

Issue #1853 has been updated by Brian Candler.

Thank you for the link. (I'm in the process of documenting some of this).

We may be at cross-purposes over terminology, but when you say "to change this behaviour would be to make the semantics of the program

locale dependent", do you mean that the behaviour of an individual Encoding may be locale-dependent? If so, that's new to me.

After all, when I put

Encoding: UTF-8

06/12/2025 2/3

http://blog.grayproductions.net/categories/character_encodings
http://yokolet.blogspot.com/2009/07/design-and-implementation-of-ruby-m17n.html
https://bugs.ruby-lang.org/issues/1853

at the top of my source, then the source encoding is fixed at UTF-8. So what I'm asking is, does the behaviour of Encoding::UTF_8 (e.g. which

characters are considered upper-case) vary at run-time dependent on the program's locale, in the sense of setlocale(3)? If so, that's new to me,

and I'd like to see an example.

Until now, I was under the impression that each Encoding had fixed behaviour, and the locale-dependent behaviour arose from

Encoding.default_external pointing to different Encodings based on the locale.

http://redmine.ruby-lang.org/issues/show/1853

http://redmine.ruby-lang.org

 --

#-# Martin J. Dürst, Professor, Aoyama Gakuin University

#-# http://www.sw.it.aoyama.ac.jp mailto:duerst@it.aoyama.ac.jp

=end

#5 - 11/04/2009 10:46 PM - naruse (Yui NARUSE)

- Category set to M17N

- Status changed from Open to Rejected

=begin

This is spec.

=end

Powered by TCPDF (www.tcpdf.org)

06/12/2025 3/3

http://redmine.ruby-lang.org/issues/show/1853
http://redmine.ruby-lang.org
http://www.sw.it.aoyama.ac.jp
mailto:duerst@it.aoyama.ac.jp
http://www.tcpdf.org

