Ruby - Bug #20209

YJIT can leak memory by retaining objects with singleton class
01/24/2024 11:06 PM - alanwu (Alan Wu)

Status: Closed
Priority: Normal
Assignee:

Target version:

ruby -v: Backport: 3.0: DONTNEED, 3.1: DONTNEED, 3.2:
DONTNEED, 3.3: DONE

Description

We've received reports of YJIT causing memory leaks in production Rails apps by keeping objects that have singleton classes alive.
The symptom is similar to #19436. We have found a workaround with https:/github.com/ruby/ruby/pull/9693 and would like to have it
in the next 3.3 point release.

Associated revisions

Revision 2cc7a56ec7830fd5efaf2bc449637fd831743714 - 01/24/2024 11:06 PM - alanwu (Alan Wu)
YJIT: Avoid leaks by skipping objects with a singleton class

For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into
the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

See: https://github.com/Shopify/ruby/issues/552

[Bug #20209]

Revision 2cc7a56ec7830fd5efaf2bc449637fd831743714 - 01/24/2024 11:06 PM - alanwu (Alan Wu)
YJIT: Avoid leaks by skipping objects with a singleton class

For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into
the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

See: hitps://github.com/Shopify/ruby/issues/552

[Bug #20209]

Revision 2cc7a56e - 01/24/2024 11:06 PM - alanwu (Alan Wu)
YJIT: Avoid leaks by skipping objects with a singleton class

For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into
the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

See: https://github.com/Shopify/ruby/issues/552

[Bug #20209]

06/26/2025 1/4



https://github.com/ruby/ruby/pull/9693
https://bugs.ruby-lang.org/issues/19436
https://github.com/ruby/ruby/pull/9693
https://github.com/Shopify/ruby/issues/552
https://github.com/Shopify/ruby/issues/552
https://github.com/Shopify/ruby/issues/552

Revision cdcabd8ad44ee2f4a2b549a3460a5¢c77c2dffca36 - 03/14/2024 04:26 PM - alanwu (Alan Wu)
Backport 3.3: YJIT memory leak fix with additional Cl fixes (#9841)
merge revision(s) 2cc7a56e,b0711b1,db5d9429: [Backport #20209]
YJIT: Avoid leaks by skipping objects with a singleton class
For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass ()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into

the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

See: https://github.com/Shopify/ruby/issues/552

[Bug #20209]

yJjit/bindgen/src/main.rs |1+
yjit/src/codegen.rs | 17 +++++++HH 4+
yjit/src/cruby_bindings.inc.rs | 1 +
yjit/src/stats.rs | 2 ++

4 files changed, 21 insertions (+)

YJIT: Fix tailcall and JIT entry eating up FINISH frames (#9729)

Suppose YJIT runs a rb_vm_opt_send_without_block ()
fallback and the control frame stack looks like:

will_tailcall_bar [FINISH]
caller_that_used_fallback

will_tailcall_bar() runs in the interpreter and sets up a tailcall.
Right before JIT_EXEC() in the "send’ instruction, the stack will look like:

bar [FINISH]
caller_that_used_fallback

Previously, JIT_EXEC() ran bar() in JIT code, which caused the "FINISH®
flag to return to the interpreter instead of to the JIT code running
caller_that_used_fallback (), causing code to run twice and probably
crash. Recent flaky failures on CI about "each stub expects a particular
iseq" are probably due to leaving methods twice in
“test_optimizations.rb’.

Only run JIT code from the interpreter if a new frame is pushed.

test/ruby/test_optimization.rb | 11 +++++++++++
vm_exec.h | 3 ++-

2 files changed, 13 insertions(+), 1 deletion(-)
YJIT: No need to RESTORE_REG now that we reject tailcalls
Thanks to Kokubun for noticing.

Follow-up: b0711lblcfl52afad0a480ee2f9%beddl42ald24ac

vm_exec.h | 1 -
1 file changed, 1 deletion(-)

Revision cdcabd8ad44ee2f4a2b549a3460a5¢c77c2dffca36 - 03/14/2024 04:26 PM - alanwu (Alan Wu)
Backport 3.3: YJIT memory leak fix with additional Cl fixes (#9841)

merge revision(s) 2cc7a56e,b0711b1,db5d9429: [Backport #20209]

YJIT: Avoid leaks by skipping objects with a singleton class

06/26/2025 2/4



For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass ()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into
the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

See: https://github.com/Shopify/ruby/issues/552

[Bug #20209]

yJjit/bindgen/src/main.rs |1+
yjit/src/codegen.rs | 17 +++++++++H+++++++H+
yjit/src/cruby_bindings.inc.rs | 1 +
yjit/src/stats.rs | 2 ++

4 files changed, 21 insertions(+)

YJIT: Fix tailcall and JIT entry eating up FINISH frames (#9729)

Suppose YJIT runs a rb_vm_opt_send_without_block ()
fallback and the control frame stack looks like:

will_tailcall_bar [FINISH]
caller_that_used_fallback

will tailcall_bar() runs in the interpreter and sets up a tailcall.
Right before JIT_EXEC() in the "send’ instruction, the stack will look like:

bar [FINISH]
caller_that_used_fallback

Previously, JIT_EXEC() ran bar() in JIT code, which caused the "FINISH®
flag to return to the interpreter instead of to the JIT code running
caller_that_used_fallback(), causing code to run twice and probably
crash. Recent flaky failures on CI about "each stub expects a particular
iseg" are probably due to leaving methods twice in
‘test_optimizations.rb’ .

Only run JIT code from the interpreter if a new frame is pushed.

test/ruby/test_optimization.rb | 11 +++++++++++
vm_exec.h | 3 ++-

2 files changed, 13 insertions(+), 1 deletion(-)
YJIT: No need to RESTORE_REG now that we reject tailcalls
Thanks to Kokubun for noticing.

Follow-up: b0711lblcfl52afad0a480ee2f9beddl42ald24ac

vm_exec.h | 1 -
1 file changed, 1 deletion(-)

Revision cdcabd8a - 03/14/2024 04:26 PM - alanwu (Alan Wu)

Backport 3.3: YJIT memory leak fix with additional Cl fixes (#9841)

merge revision(s) 2cc7a56e,b0711b1,db5d9429: [Backport #20209]
YJIT: Avoid leaks by skipping objects with a singleton class
For receiver with a singleton class, there are multiple vectors YJIT can
end up retaining the object. There is a path in jit_guard_known_klass ()
that bakes the receiver into the code, and the object could also be kept
alive indirectly through a path starting at the CME object baked into

the code.

To avoid these leaks, avoid compiling calls on objects with a singleton
class.

06/26/2025 3/4



See: https://github.com/Shopify/ruby/issues/552

[Bug #20209]

yjit/bindgen/src/main.rs |1+
yjit/src/codegen.rs | 17 +++++++H
yjit/src/cruby_bindings.inc.rs | 1 +
yjit/src/stats.rs | 2 ++

4 files changed, 21 insertions(+)

YJIT: Fix tailcall and JIT entry eating up FINISH frames (#9729)

Suppose YJIT runs a rb_vm_opt_send_without_block ()
fallback and the control frame stack looks like:

will_tailcall_bar [FINISH]
caller_that_used_fallback

will_tailcall_bar() runs in the interpreter and sets up a tailcall.
Right before JIT_EXEC() in the “send’ instruction, the stack will look like:

bar [FINISH]
caller_that_used_fallback

Previously, JIT_EXEC() ran bar() in JIT code, which caused the "FINISH®
flag to return to the interpreter instead of to the JIT code running
caller_that_used_fallback(), causing code to run twice and probably
crash. Recent flaky failures on CI about "each stub expects a particular
iseqg" are probably due to leaving methods twice in
‘test_optimizations.rb'.

Only run JIT code from the interpreter if a new frame is pushed.

test/ruby/test_optimization.rb | 11 +++++++++++
vm_exec.h | 3 ++=

2 files changed, 13 insertions(+), 1 deletion(-)

YJIT: No need to RESTORE_REG now that we reject tailcalls
Thanks to Kokubun for noticing.

Follow-up: b0711lblcfl52afad0a480ee2f9beddl42al0d24ac

vm_exec.h | 1 -
1 file changed, 1 deletion(-)

History

#1 - 02/05/2024 10:18 PM - alanwu (Alan Wu)

Note, there was an additional fix to stabilize ClI after this. | opened a GitHub PR with everything bundled together:
https://github.com/ruby/ruby/pull/9841

#2 - 03/20/2024 12:58 PM - naruse (Yui NARUSE)
- Backport changed from 3.0: DONTNEED, 3.1: DONTNEED, 3.2: DONTNEED, 3.3: REQUIRED to 3.0: DONTNEED, 3.1: DONTNEED, 3.2:
DONTNEED, 3.3: DONE

ruby_3_3 cdcabd8a44ee2f4a2b549a3460a5¢77c2dffca36 merged revision(s) 2cc7a56e,b0711b1,db5d9429.

06/26/2025 4/4


https://github.com/ruby/ruby/pull/9841
http://www.tcpdf.org

