Ruby - Misc #20279

Is the implementation of ‘respond_to_missing?’ in BasicObject documentation correct?
02/19/2024 05:18 AM - ioquatix (Samuel Williams)

Status: Closed
Priority: Normal
Assignee:

Description

Considering the documentation here: https:/ruby-doc.org/3.2.2/BasicObject.html

Introduced in: https://github.com/ruby/ruby/commit/3eb7d2b33e3f8555d81db5369eb6fb7100a91e63

| wondered if or super is correct in respond_to_missing?.
For example:
irb(main) :001* class MyObjectSystem < BasicObiject

irb (main) : 002* DELEGATE = [:puts, :p]
irb (main) : 003*

irb (main) :004* def method_missing(name, *args, &block)

irb (main) :005%* return super unless DELEGATE.include? name

irb (main) :006* ::Kernel.send (name, *args, é&block)

irb (main) :007* end

irb (main) :008*

irb (main) :009* public def respond_to_missing? (name, include_private = false)
irb (main) : 010%* DELEGATE.include? (name) or super

irb (main) : 011%* end

irb (main) :012> end
=> :respond_to_missing?
irb(main) : 013> MyObjectSystem.new.respond_to_missing? (:foo0)
(irb) :5:1n "method_missing': super: no superclass method 'respond_to_missing?' for an instance of
MyObjectSystem (NoMethodError)
from (irb):10:in "“respond_to_missing?'
from (irb):13:in "~ <main>'
from <internal:kernel>:187:in " loop'
from /home/samuel/.gem/ruby/3.3.0/gems/irb-1.11.2/exe/irb:9:in "<top (required)>'
from /home/samuel/.gem/ruby/3.3.0/bin/irb:25:in " load'
from /home/samuel/.gem/ruby/3.3.0/bin/irb:25:in " <main>'

It looks wrong to me.
In addition, I'd like to know in what situations BasicObject should define respond_to_missing? - because | was under the impression

it was called by method_missing. Does BasicObject#method_missing have this behaviour? Maybe we can improve the
documentation cc @burdettelamar (Burdette Lamar)

Associated revisions

Revision €127289632396268099c9815a59bc7e7f13b3ec - 03/19/2024 12:49 PM - Earlopain (Earlopain _)
[Bug #20279] [DOC] Update for BasicObject

The current implementation raises on the call to super

Revision e127289632396f268099c9815a59bc7e7f13b3ec - 03/19/2024 12:49 PM - Earlopain (Earlopain _)
[Bug #20279] [DOC] Update for BasicObject

The current implementation raises on the call to super

Revision 1272896 - 03/19/2024 12:49 PM - Earlopain (Earlopain _)
[Bug #20279] [DOC] Update for BasicObject

The current implementation raises on the call to super

06/26/2025 1/3



https://ruby-doc.org/3.2.2/BasicObject.html
https://github.com/ruby/ruby/commit/3eb7d2b33e3f8555d81db5369eb6fb7100a91e63
https://bugs.ruby-lang.org/users/52355

History

#1 - 02/19/2024 05:49 AM - ioquatix (Samuel Williams)

- Subject changed from ‘respond_to_missing?" in BasicObject documentation correct? to Is the implementation of “respond_to_missing?" in

BasicObject documentation correct?

#2 - 02/19/2024 08:06 AM - byroot (Jean Boussier)

because | was under the impression it was called by method_missing.

respond_to_missing? isn't called by method_missing but by Kernel#respond_to?, and BasicObject doesn't define respond_to?.

If you want to implement a delegator that responds to respond_to?, you need to copy the method over from Kernel:

class Proxy < BasicObject

DELEGATE = [:puts, :p]

define_method (:respond_to?, ::Kernel.instance_method(:respond_to?))

private

define_method (:respond_to_missing?, ::Kernel.instance_method (:respond_to_missing?))

def method_missing(name, *args, &block)
return super unless DELEGATE.include? name
::Kernel.send(name, *args, é&block)

end
def respond_to_missing? (name, include_private = false)
DELEGATE.include? (name) or super
end
end
proxy = Proxy.new

p proxy.respond_to? (:puts)
proxy.puts "Hello"

true
Hello

#3 - 02/19/2024 08:08 AM - byroot (Jean Boussier)

So yes, the documentation is incorrect.

#4 - 02/19/2024 09:51 AM - ioquatix (Samuel Williams)

Do you want to submit a PR? You already wrote most of the code... however:

define_method (:respond_to_missing?, ::Kernel.instance_method (:respond_to_missing?))
def respond_to_missing? (name, include_private = false)

DELEGATE.include? (name) or super
end

Won't these clobber each other?

#5 - 02/19/2024 09:52 AM - byroot (Jean Boussier)

Won't these clobber each other?

Yeah, my bad. You either need to copy it in an included module, or just not copy it over and not call super.

#6 - 03/19/2024 02:17 PM - Anonymous
- Status changed from Open to Closed

Applied in changeset git|e127289632396f268099c9815a59bc7e7f13b3ec.

06/26/2025

2/3


https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/e127289632396f268099c9815a59bc7e7f13b3ec

[Bug #20279] [DOC] Update for BasicObject

The current implementation raises on the call to super

06/26/2025 3/3


https://bugs.ruby-lang.org/issues/20279
http://www.tcpdf.org

