
Ruby - Misc #21281

DevMeeting-2025-05-08

04/23/2025 09:56 AM - mame (Yusuke Endoh)

Status: Closed

Priority: Normal

Assignee:

Description

The next dev meeting

Date: 2025/05/08 13:00-17:00 (JST)

Log: https://github.com/ruby/dev-meeting-log/blob/master/2025/DevMeeting-2025-05-08.md

Dev meeting IS NOT a decision-making place. All decisions should be done at the bug tracker.

Dev meeting is a place we can ask Matz, nobu, nurse and other developers directly.

Matz is a very busy person. Take this opportunity to ask him. If you can not attend, other attendees can ask instead of you (if

attendees can understand your issue).

We will write a record of the discussion in the file or to each ticket in English.

All activities are best-effort (keep in mind that most of us are volunteer developers).

The date, time and place of the meeting are scheduled according to when/where we can reserve Matz's time.

DO NOT discuss then on this ticket, please.

Call for agenda items

If you have a ticket that you want matz and committers to discuss, please post it into this ticket in the following format:

* [Ticket ref] Ticket title (your name)

 * Comment (A summary of the ticket, why you put this ticket here, what point should be discussed

, etc.)

 Example:

* [Feature #14609] `Kernel#p` without args shows the receiver (ko1)

 * I feel this feature is very useful and some people say :+1: so let discuss this feature.

It is recommended to add a comment by 2025/05/05. We hold a preparatory meeting to create an agenda a few days before the

dev-meeting.

The format is strict. We'll use this script to automatically create an markdown-style agenda. We may ignore a comment that

does not follow the format.

Your comment is mandatory. We cannot read all discussion of the ticket in a limited time. We appreciate it if you could write a

short summary and update from a previous discussion.

Related issues:

Related to Ruby - Misc #14770: [META] DevelopersMeeting Open

History

#1 - 04/23/2025 09:56 AM - mame (Yusuke Endoh)

- Related to Misc #14770: [META] DevelopersMeeting added

#2 - 04/23/2025 11:15 AM - byroot (Jean Boussier)

[Feature #15408] Actually deprecate ObjectSpace._id2ref (byroot)

Matz agreed to deprecate _id2ref for Ruby 2.7 but that was never implemented.

I have a PR open to finally do it, but should the deprecation mention the removal timeline, is there one?

The main user is drb but there is a PR open to solve it: https://github.com/ruby/drb/pull/31

#3 - 05/01/2025 06:21 AM - tagomoris (Satoshi Tagomori)

[Feature #21311] Namespace on read (tagomoris)

I'm finishing the namespace branch to be ready for merge (disabled by default)

https://github.com/tagomoris/ruby/tree/namespace-on-read-classext

06/09/2025 1/2

https://github.com/ruby/dev-meeting-log/blob/master/2025/DevMeeting-2025-05-08.md
https://gist.github.com/mame/b0390509ce1491b43610b9ebb665eb86
https://bugs.ruby-lang.org/issues/15408
https://github.com/ruby/ruby/pull/13157
https://github.com/ruby/drb/pull/31
https://bugs.ruby-lang.org/issues/21311
https://github.com/tagomoris/ruby/tree/namespace-on-read-classext

Feature #21311

https://github.com/ruby/ruby/pull/13226

Current status:

Default (Namespace disabled, YJIT/ZJIT disabled): make check and make exam passed on my macOS (not checked on CI)

Namespace enabled: make check passed but make exam failed (the known cause and I'll update the implementation soon)

I hope it'll be merged without further more rebases :P

#4 - 05/03/2025 07:43 AM - jeremyevans0 (Jeremy Evans)

[Feature #21274] Show performance warnings for easily avoidable unnecessary implicit splat allocations (jeremyevans0)

This warning only shows method calls that are allocating unnecessarily, where allocation can be avoided by using a local variable.

This warning found unnecessary allocations in the standard library, rubygems, Rails, and Sequel.

We are currently only using performance warnings for objects with too many shapes.

Is this OK to commit?

[Feature #21287] Remove SortedSet autoload and set/sorted_set (jeremyevans0)

Set is now a core class, and the SortedSet autoload that was in set.rb is now in core.

This autoload only works if the sorted_set gem is installed.

I don't think we should have this autoload, can we remove it?

If so, do we want to deprecate the autoload before removing it?

[Bug #21302] Remove or Fix Set#to_h (jeremyevans0)

The method was not present in stdlib Set, and not previously approved for addition.

However, psych started using it.

The method is not backwards compatible with the previous Set#to_h (implemented by Enumerable#to_h).

I recommend we remove it and fix psych, and have a pull request for that.

If we want to keep it, I have a pull request to fix it, and add tests and documentation.

Do we want to keep Set#to_h and have a return a true-valued hash if not given a block?

[Bug #21280] StringIO#set_encoding warns when backed by chilled string literal (jeremyevans0)

This warning is bogus, as most code using this does not need changes when string literals are frozen.

Issuing bogus warnings prompts for unnecessary code changes and should be avoided.

StringIO#set_encoding already does not set the encoding if the string is frozen, since [Bug #11827]

I recommend we stop setting the underlying encoding for non-frozen strings to avoid the warning.

This could be done for only chilled strings, or for all strings if behavior should be consistent.

Should we make this change, and if so, for chilled strings or for both chilled and unfrozen strings?

#5 - 05/03/2025 06:25 PM - mame (Yusuke Endoh)

[Feature #21307] A way to strictly validate time input (mame)

I want to confirm that the current tolerant behavior of Time.new is intentional, and if so, want a strict variant of Time.new.

#6 - 05/04/2025 01:26 AM - jhawthorn (John Hawthorn)

[Feature #21267] respond_to check in Class#allocate is inconsistent

Class#allocate does a slow respond_to check to try to prevent uninitialized values via method(:allocate).bind_call on MatchData,

Refinement, Module, Complex, Rational

The respond_to check is easy to trick and bypass. Even if it was more strict, it does not seem to provide additional safety as there are other

ways to construct uninitialized objects.

Is it OK to remove?

#7 - 05/07/2025 05:01 AM - hsbt (Hiroshi SHIBATA)

[Feature #21258] Retire CGI library from Ruby 3.5

Can I remove CGI library without CGI::Util ?

What's the preferred migration process?

1. We keep only cgi/escape (C impl)feature in Ruby.

2. We keep cgi/util with cgi/escape. The current CGI library is removed and depend cgi-util gem.

3. We migrate cgi/escape to other class/module. The current CGI library and cgi/escape are removed.

4. We provide cgi-util gem for migration with deprecated warning at Ruby 3.5. In next year, we will remove cgi-util gem.

#8 - 05/09/2025 10:31 AM - Eregon (Benoit Daloze)

- Description updated

#9 - 06/05/2025 11:04 AM - mame (Yusuke Endoh)

- Status changed from Open to Closed

Powered by TCPDF (www.tcpdf.org)

06/09/2025 2/2

https://bugs.ruby-lang.org/issues/21311
https://github.com/ruby/ruby/pull/13226
https://bugs.ruby-lang.org/issues/21274
https://bugs.ruby-lang.org/issues/21287
https://bugs.ruby-lang.org/issues/21302
https://bugs.ruby-lang.org/issues/21280
https://bugs.ruby-lang.org/issues/11827
https://bugs.ruby-lang.org/issues/21307
https://bugs.ruby-lang.org/issues/21267
https://bugs.ruby-lang.org/issues/21267#note-1
https://bugs.ruby-lang.org/issues/21267#note-1
https://bugs.ruby-lang.org/issues/21258
http://www.tcpdf.org

