
Ruby - Feature #2348

RBTree Should be Added to the Standard Library

11/09/2009 06:41 AM - JEG2 (James Gray)

Status: Rejected

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version: 2.6

Description

=begin

The merits of this library have been discussed on Ruby core, with the strengths best summarized by this post:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602

RBTree has now been fixed to run on Ruby 1.9:

http://github.com/skade/rbtree

I think we should now give serious consideration to bringing it into the standard library.

=end

Related issues:

Related to Ruby - Feature #9121: [PATCH] Remove rbtree implementation of Sort... Closed

History

#1 - 11/09/2009 07:38 AM - Skade (Florian Gilcher)

=begin

On Nov 8, 2009, at 6:11 PM, James Gray wrote:

Feature #2348: RBTree Should be Added to the Standard Library

http://redmine.ruby-lang.org/issues/show/2348

Author: James Gray

Status: Open, Priority: Normal

Category: lib, Target version: 1.9.2

The merits of this library have been discussed on Ruby core, with

the strengths best summarized by this post:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602

RBTree has now been fixed to run on Ruby 1.9:

http://github.com/skade/rbtree

I think we should now give serious consideration to bringing it into

the standard library.

 To add to that: I also contacted the maintainer of RBTree to

inform him of my patches and to ask for his thoughts. As the

library is of good-quality and fitted with a good test suite,

I would also volunteer to maintain it, but I want to wait

for an answer first.

Regards,

Florian Gilcher

=end

#2 - 11/09/2009 12:12 PM - nobu (Nobuyoshi Nakada)

Hi,

At Mon, 9 Nov 2009 06:41:57 +0900,

06/11/2025 1/17

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602
http://github.com/skade/rbtree
https://bugs.ruby-lang.org/issues/2348
http://redmine.ruby-lang.org/issues/show/2348
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602
http://github.com/skade/rbtree

James Gray wrote in [ruby-core:26635]:

RBTree has now been fixed to run on Ruby 1.9:

http://github.com/skade/rbtree

 It can't compile with non-gcc, or with gcc and $DEBUG.

diff --git a/extconf.rb b/extconf.rb

index 272790b..02f2e8e 100644

--- a/extconf.rb

+++ b/extconf.rb

@@ -2,5 +2,7 @@ require 'mkmf'

 if $DEBUG

- $CFLAGS << ' -std=c89 -pedantic -Wall -Wno-long-long'

+ if CONFIG['GCC'] == 'yes'

+ $CFLAGS << ' -std=c89 -pedantic -Wno-long-long'

+ end

 $defs << ' -Dinline=__inline'

 else

@@ -8,4 +10,4 @@ else

 end

-have_func('rb_enumeratorize')

+have_func('rb_exec_recursive', 'ruby.h')

 create_makefile('rbtree')

diff --git a/rbtree.c b/rbtree.c

index 9f19613..08bde65 100644

--- a/rbtree.c

+++ b/rbtree.c

@@ -12,8 +12,15 @@

 #define HASH_PROC_DEFAULT FL_USER2

-#ifndef HAVE_RB_ENUMERATORIZE

+#ifndef RETURN_ENUMERATOR

 #define RETURN_ENUMERATOR(obj, argc, argv) ((void)0)

 #endif

+#ifndef RHASH_TBL

+#define RHASH_TBL(h) RHASH(h)->tbl

+#endif

+#ifndef RHASH_IFNONE

+#define RHASH_IFNONE(h) RHASH(h)->ifnone

+#endif

+

 VALUE RBTree;

 VALUE MultiRBTree;

@@ -428,5 +435,5 @@ static int

 value_eq(const void* key1, const void* key2)

 {

- return rb_equal((VALUE)key1, (VALUE)key2);

+ return rb_equal((VALUE)key1, (VALUE)key2) != 0;

 }

@@ -1077,5 +1084,5 @@ rbtree_to_hash(VALUE self)

 hash = rb_hash_new();

 rbtree_for_each(self, to_hash_i, (void*)hash);

- RHASH(hash)->ifnone = IFNONE(self);

+ RHASH_IFNONE(hash) = IFNONE(self);

 if (FL_TEST(self, RBTREE_PROC_DEFAULT))

 FL_SET(hash, HASH_PROC_DEFAULT);

@@ -1097,7 +1104,6 @@ rbtree_begin_inspect(VALUE self)

 {

 const char* c = rb_class2name(CLASS_OF(self));

- char str [strlen(c) + 5];

- sprintf(str, "#<%s: ", c);

- VALUE rb_str = rb_str_new2(str);

+ VALUE rb_str = rb_str_new(0, strlen(c) + 4);

+ sprintf(RSTRING_PTR(rb_str), "#<%s: ", c);

 return rb_str;

 }

@@ -1109,4 +1115,5 @@ to_s_rbtree(VALUE self, VALUE nil)

 }

06/11/2025 2/17

bugs.ruby-lang.org/issues/2348
http://github.com/skade/rbtree

+#ifdef HAVE_RB_EXEC_RECURSIVE

 VALUE

 rbtree_to_s_recursive(VALUE self, VALUE arg, int recursive)

@@ -1116,4 +1123,5 @@ rbtree_to_s_recursive(VALUE self, VALUE arg, int recursive)

 return to_s_rbtree(self, Qnil);

 }

+#endif

 /*

@@ -1123,8 +1131,11 @@ VALUE

 rbtree_to_s(VALUE self)

 {

+#ifdef HAVE_RB_EXEC_RECURSIVE

 return rb_exec_recursive(rbtree_to_s_recursive, self, Qnil);

- //if (rb_inspecting_p(self))

- // return rb_str_cat2(rbtree_begin_inspect(self), "...>");

- //return rb_protect_inspect(to_s_rbtree, self, Qnil);

+#else

+ if (rb_inspecting_p(self))

+ return rb_str_cat2(rbtree_begin_inspect(self), "...>");

+ return rb_protect_inspect(to_s_rbtree, self, Qnil);

+#endif

 }

@@ -1194,8 +1205,12 @@ VALUE

 rbtree_inspect(VALUE self)

 {

- /*VALUE str = rbtree_begin_inspect(self);

- if (rb_inspecting_p(self))

- return rb_str_cat2(str, "...>");*/

+#ifdef HAVE_RB_EXEC_RECURSIVE

 return rb_exec_recursive(rbtree_inspect_recursive, self, Qnil);

+#else

+ VALUE str = rbtree_begin_inspect(self);

+ if (rb_inspecting_p(self))

+ return rb_str_cat2(str, "...>");

+ return rb_protect_inspect(inspect_rbtree, self, str);

+#endif

 }

diff --git a/test.rb b/test.rb

index 8c533b8..32fdd25 100644

--- a/test.rb

+++ b/test.rb

@@ -136,5 +136,5 @@ class RBTreeTest < Test::Unit::TestCase

 assert_raises(ArgumentError) { rbtree.default("e", "f") }

- rbtree = RBTree.new {|rbtree, key| @rbtree[key || "c"] }

+ rbtree = RBTree.new {|tree, key| @rbtree[key || "c"] }

 assert_equal("C", rbtree.default(nil))

 assert_equal("B", rbtree.default("b"))

@@ -182,5 +182,5 @@ class RBTreeTest < Test::Unit::TestCase

 a = RBTree.new

 b = RBTree.new

- a.readjust {|a, b| a <=> b }

+ a.readjust {|x, y| x <=> y }

 assert_not_equal(a, b)

 b.readjust(a.cmp_proc)

@@ -198,5 +198,14 @@ class RBTreeTest < Test::Unit::TestCase

 assert_equal("E", @rbtree.fetch("e", "E"))

 assert_equal("E", @rbtree.fetch("e") { "E" })

+ class << (stderr = "")

+ alias write <<

+ end

+ $stderr, stderr, $VERBOSE, verbose = stderr, $stderr, false, $VERBOSE

+ begin

 assert_equal("E", @rbtree.fetch("e", "F") { "E" })

+ ensure

+ $stderr, stderr, $VERBOSE, verbose = stderr, $stderr, false, $VERBOSE

+ end

+ assert_match(/warning: block supersedes default value argument/, stderr)

 assert_raises(ArgumentError) { @rbtree.fetch }

@@ -535,5 +544,5 @@ class RBTreeTest < Test::Unit::TestCase

06/11/2025 3/17

 assert_equal(%({"a"=>"A", "b"=>"B", "c"=>"C", "d"=>"D"}), tree)

 assert_equal(%("e"), default)

- assert_match(/#<Proc:\w+(@test.rb:\d+)?>/, cmp_proc)

+ assert_match(/#<Proc:\w+(@#{__FILE__}:\d+)?>/o, cmp_proc)

 rbtree = RBTree.new

 --

Nobu Nakada

#3 - 11/10/2009 12:21 AM - Skade (Florian Gilcher)

=begin

Hi,

thanks for the patch, I applied it with a minor addition (also matching on HAVE_RB_EXEC_RECURSIVE in pp functions to use the "old" behaviour

instead).

I expect that the compiler problems are only because of the flags in extconf.rb or are there other thing I missed?

Concerning HAVE_RB_EXEC_RECURSIVE: i looked it up and rb_inspecting_p is gone since March 2005. Are there considerable chances of a

modern ruby version still in support that does not have rb_exec_recursive? (1.8.6 perhaps?)

Both questions are more out of curiosity, as I said, I'm not that into Ruby internals and/or consider myself a good C developer ;).

Regards,

Florian

=end

#4 - 11/11/2009 09:22 AM - nobu (Nobuyoshi Nakada)

=begin

Hi,

At Tue, 10 Nov 2009 00:21:45 +0900,

Florian Gilcher wrote in [ruby-core:26654]:

thanks for the patch, I applied it with a minor addition

(also matching on HAVE_RB_EXEC_RECURSIVE in pp functions to

use the "old" behaviour instead).

 Indentation seems broken in rbtree_to_s().

I expect that the compiler problems are only because of the

flags in extconf.rb or are there other thing I missed?

 And syntax errors in rbtree_begin_inspect():

 char str [strlen(c) + 5];

 sprintf(str, "#<%s: ", c);

 VALUE rb_str = rb_str_new2(str);

 Dynamic size array and local variable definition after

executable statements are C99 features but not allowed in C89.

Also C++ style one-line comment in rbtree_to_s():

//if (rb_inspecting_p(self))

Concerning HAVE_RB_EXEC_RECURSIVE: i looked it up and

rb_inspecting_p is gone since March 2005. Are there

considerable chances of a modern ruby version still in

support that does not have rb_exec_recursive? (1.8.6

perhaps?)

 Since there was the code using rb_inspecting_p(). I don't like

comment-out for such case.

--

Nobu Nakada

=end

06/11/2025 4/17

https://blade.ruby-lang.org/ruby-core/26654

#5 - 11/28/2009 11:54 AM - ujihisa (Tatsuhiro Ujihisa)

- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

=begin

=end

#6 - 03/22/2010 04:26 AM - JEG2 (James Gray)

=begin

Is there any chance we could get this incorporated before the 1.9.2 feature freeze?

=end

#7 - 03/22/2010 05:16 AM - naruse (Yui NARUSE)

=begin

This ticket doesn't have:

Who maintain it

Sufficient reason to bundle

If someone maintain it, the problem is, Is this worth to bundle?

So you should persuade, like:

Gauche have RBTree http://practical-scheme.net/gauche/man/gauche-refe_166.html

You should use RBTree when you want to use Array#assoc

You should use RBTree when you want OrderedHash

So RBTree is worth to bundle with Ruby

=end

#8 - 03/22/2010 09:40 AM - mame (Yusuke Endoh)

=begin

Hi,

2010/3/22 James Gray redmine@ruby-lang.org:

Is there any chance we could get this incorporated before the 1.9.2 feature freeze?

 This ticket is not simple since this feature seems to be against "Large

Class Principle". We need matz's approval.

My current personal opinion is that it is appropriate for the feature to

be just a part of set.rb as a back-end, instead of a first class library.

Is there case where we want to use RBTree directly, instead of set.rb?

--

Yusuke ENDOH mame@tsg.ne.jp

=end

#9 - 03/22/2010 10:59 AM - spatulasnout (B Kelly)

=begin

Hi,

Yusuke ENDOH wrote:

Is there case where we want to use RBTree directly, instead of set.rb?

 I'm sorry if I've misunderstood - but it would not have occurred

to me to use 'set' to access RBTree's functionality.

RBTree and MultiRBTree (both provided by require 'rbtree') are

akin to std::map and std::multimap in C++ STL.

It has long been a mystery to me that a Sorted Pair Associative

Container with O(log N) insert, search, and delete complexity

has not been a part of ruby's stdlib.

06/11/2025 5/17

http://practical-scheme.net/gauche/man/gauche-refe_166.html
mailto:redmine@ruby-lang.org
mailto:mame@tsg.ne.jp

RBTree and MultiRBTree provide functionality which, with its

worst-case O(log N) search, insert, and delete complexity for

a sorted pair associative container can't be readily duplicated

with Array, Hash, or Set. (As far as I know.)

RBTree and MultiRBTree are very useful container types when

needed.

I do think the "RB" portion of the name is slightly unfortunate,

as we don't generally care that it is implemented as a red-black

tree internally; we just care about O(log N) complexity

guarantees.

Anyway - I apologize if i've merely regurgitated a litany of

obvious points into the conversation. I didn't really

understand why RBTree/MultiRBTree would be considered a

variant of Set?

Regards,

Bill

=end

#10 - 03/22/2010 11:27 AM - mame (Yusuke Endoh)

=begin

Hi,

2010/3/22 Bill Kelly billk@cts.com:

RBTree and MultiRBTree provide functionality which, with its

worst-case O(log N) search, insert, and delete complexity for

a sorted pair associative container can't be readily duplicated

with Array, Hash, or Set. ?(As far as I know.)

 Hash has amortized O(1) search, insert, and delete complexity,

I think. Indeed, it becomes O(N) at worst-case (when rehash

occurs). Does anyone have a concrete problem due to rehash?

I think this feature request is very tough because it can be

substituted by Hash in many cases. So I think you guys should

appeal the difference. It would be good to show some real-world

case where Hash cannot be used and RBTree is really needed.

I do think the "RB" portion of the name is slightly unfortunate,

as we don't generally care that it is implemented as a red-black

tree internally; we just care about O(log N) complexity

guarantees.

 True.

Anyway - I apologize if i've merely regurgitated a litany of

obvious points into the conversation. ?I didn't really

understand why RBTree/MultiRBTree would be considered a

variant of Set?

 There is no use case presented other than set, as far as I read.

--

Yusuke ENDOH mame@tsg.ne.jp

=end

#11 - 03/22/2010 07:06 PM - spatulasnout (B Kelly)

=begin

Yusuke ENDOH wrote:

2010/3/22 Bill Kelly billk@cts.com:

RBTree and MultiRBTree provide functionality which, with its

06/11/2025 6/17

mailto:billk@cts.com
mailto:mame@tsg.ne.jp
mailto:billk@cts.com

worst-case O(log N) search, insert, and delete complexity for

a sorted pair associative container can't be readily duplicated

with Array, Hash, or Set. ?(As far as I know.)

 Hash has amortized O(1) search, insert, and delete complexity,

I think. Indeed, it becomes O(N) at worst-case (when rehash

occurs). Does anyone have a concrete problem due to rehash?

 Agreed: for Hash I would expect O(1) search, and amortized O(1)

insert and delete complexity.

To avoid rehash, a Hash#reserve(size) method might be nice, but,

for me, that is all separate from why I am interested in RBTree.

I think this feature request is very tough because it can be

substituted by Hash in many cases. So I think you guys should

appeal the difference. It would be good to show some real-world

case where Hash cannot be used and RBTree is really needed.

 Some differences:

Hash is not maintained in key-sorted order.

Hash does not offer upper_bound(key) or lower_bound(key)

or bound(key1, key2) in O(log N) time.

Hash doesn't provide fast search for partial string key.

An example, indexing words in documents, and doing

partial keyword searches.

(Note: MultiRBTree#bound seems to be broken.)

require 'rbtree'

ful_ = %w(

fulcra

fulcrum

fulcrums

fulfil

fulfill

fulfilled

fulfilling

fulfillment

fulfills

fulfilment

fulfils

full

fullback

fullbacks

fulled

fuller

fullest

fulling

fullness

fulls

fully

fulminate

fulminated

fulminates

fulminating

fulmination

fulminations

fulsome

)

multi_ = %w(

multicolored

multicultural

multiculturalism

multidimensional

multifaceted

06/11/2025 7/17

multifarious

multifariousness

multilateral

multilingual

multimedia

multimillionaire

multimillionaires

multinational

multinationals

multiple

multiples

multiplex

multiplexed

multiplexer

multiplexers

multiplexes

multiplexing

multiplicand

multiplicands

multiplication

multiplications

multiplicative

multiplicities

multiplicity

multiplied

multiplier

multipliers

multiplies

multiply

multiplying

multiprocessing

multipurpose

multiracial

multitasking

multitude

multitudes

multitudinous

multivariate

multivitamin

multivitamins

)

dis_ = %w(

distortions

distorts

distract

distracted

distracting

distraction

distractions

distracts

distrait

distraught

distress

distressed

distresses

distressful

distressing

distressingly

distribute

distributed

distributes

distributing

distribution

distributions

distributive

distributor

distributors

district

districts

distrust

distrusted

distrustful

distrustfully

distrusting

06/11/2025 8/17

distrusts

disturb

disturbance

disturbances

disturbed

disturbing

disturbingly

disturbs

)

doc1 = ["foo/doc1.txt", ful_ + multi_]

doc2 = ["bar/doc2.txt", multi_ + dis_]

doc3 = ["baz/doc3.txt", ful_ + dis_]

dict = MultiRBTree.new

[doc1, doc2, doc3].each do |docpath, words|

 words.each do |w|

 dict.store(w, docpath)

 end

end

puts dict.lower_bound("mult") # => ["multicolored", "foo/doc1.txt"]

puts dict.upper_bound("mult") # => ["fulsome", "baz/doc3.txt"]

puts dict.bound("mult") # <-- broken

 Note: The documentation for RBTree#bound reads:

call-seq:

rbtree.bound(key1, key2 = key1) => array

rbtree.bound(key1, key2 = key1) {|key, value| block} => rbtree

Returns an array containing key-value pairs between the result of

MultiRBTree#lower_bound and MultiRBTree#upper_bound. If a block is

given it calls the block once for each pair.

So I expected dict.bound("mult") to return all elements from:

dict.lower_bound("mult") => ["multicolored", "foo/doc1.txt"]

through:

dict.upper_bound("mult") => ["fulsome", "baz/doc3.txt"]

However, #bound just retunrs [] :(

I consider this a bug.

A comment:

Even if MultiRBTree#bound worked as expected, I must concede a

significant liability of MultiRBTree's API compared to C++

std::multimap, is the lack of iterators.

With std::multimap, I can find dict.lower_bound("mult"), and

then iterate over as many or as few subsequent elements in sorted

order as I choose. (When building a typedown menu, for example,

I may only want the first 10 results.)

I suppose rbtree.bound(key1, key2, limit) would be one way to

provide equivalent functionality; or perhaps support for 1.9

Enumerable would be another.

Anyway, issues with MultiRBTree#bound aside, other ways I've

used a Sorted Pair Associative Container include implementing

various kinds of priority queues. (Sorted integer keys.)

I do think that for RBTree and MultiRBTree to be as generally

useful as C++ std::map and std::multimap, there should be

06/11/2025 9/17

versions of methods like bound, lower_bound, upper_bound, that

return an enumerator.

Also, I think it should be possible to unambiguously delete

a specific element from a MultiRBTree.

Currently:

t = MultiRBTree.new

t.store "foo", "456"

t.store "foo", "123"

t.delete "foo" # <-- which is deleted? foo/123 or foo/456 ?

It appears that MultiRBTree#delete deletes the oldest key/value

pair matching the supplied key, so it would be foo/456.

As far as I can tell, there's no way to delete foo/123 from t

without first deleting foo/456. So that is another limitation

when compared to std::multimap.

Hmm.

So it seems that even though RBTree and MultiRBTree are

internally equivalent to C++ std::map and std::multimap, the

interface exposed to the programmer is less flexible than the

C++ versions.

I think RBTree and MultiRBTree would be more useful it were

possible to obtain enumerators from bound and lower_bound,

and to be able to delete arbitrary elements in a MultiRBTree.

Sorry this email is so long. I didn't expect to encounter

these issues.

Regards,

Bill

=end

#12 - 03/22/2010 08:06 PM - mame (Yusuke Endoh)

=begin

Hi,

Thank you for your detailed reply!

2010/3/22 Bill Kelly billk@cts.com:

Hash is not maintained in key-sorted order.

Hash does not offer upper_bound(key) or lower_bound(key)

or bound(key1, key2) in O(log N) time.

 Good. I start to want RBTree too :-)

Hash doesn't provide fast search for partial string key.

 You mean prefix search, right?

And, can partial array key be handled?

puts dict.upper_bound("mult") ?# => ["fulsome", "baz/doc3.txt"]

 Is this correct? I expect it to return ["multivitamins", "foo/doc1.txt"]

or ["multivitamins", "bar/doc2.txt"].

However, #bound just retunrs [] ?:(

 I guess it is because upper_bound is broken.

06/11/2025 10/17

mailto:billk@cts.com

I do think that for RBTree and MultiRBTree to be as generally

useful as C++ std::map and std::multimap, there should be

versions of methods like bound, lower_bound, upper_bound, that

return an enumerator.

 Agreed. I think bound should return an enumerator instead of an

array when block is not given.

You presented dictionary-like application and priority queue as

use cases. I'm convinced at the explanation.

But RBTree seems to have some problems of not only simple bug but

also API design. If so, it is slightly premature, so it may be

better to defer its bundle to 1.9.3 or later.

--

Yusuke ENDOH mame@tsg.ne.jp

=end

#13 - 03/23/2010 07:31 AM - spatulasnout (B Kelly)

=begin

Tanaka Akira wrote:

2010/3/22 Bill Kelly billk@cts.com:

Hash doesn't provide fast search for partial string key.

 RBTree doesn't provide it.

Because RBTree uses <=> for comparing elements.

The result of <=> is not useful to test partial key match.

 Ah. I meant via #lower_bound.

/*

Look for the node corresponding to the lowest key that is equal to or

greater than the given key. If there is no such node, return null.

*/

dnode_t *dict_lower_bound(dict_t *dict, const void *key)

Seems to me this should provide a fast search for a partial

string key. (?)

Regards,

Bill

=end

#14 - 03/23/2010 07:50 AM - spatulasnout (B Kelly)

=begin

Bill Kelly wrote:

Tanaka Akira wrote:

2010/3/22 Bill Kelly billk@cts.com:

Hash doesn't provide fast search for partial string key.

RBTree doesn't provide it.

Because RBTree uses <=> for comparing elements.

The result of <=> is not useful to test partial key match.

Ah. I meant via #lower_bound.

/*

Look for the node corresponding to the lowest key that is equal to or

06/11/2025 11/17

mailto:mame@tsg.ne.jp
mailto:billk@cts.com
mailto:billk@cts.com

greater than the given key. If there is no such node, return null.

*/

dnode_t *dict_lower_bound(dict_t *dict, const void *key)

Seems to me this should provide a fast search for a partial

string key. (?)

 Sorry, I was imprecise. By partial I meant prefix, as

Yusuke ENDOH pointed out.

Regards,

Bill

=end

#15 - 03/23/2010 07:53 AM - headius (Charles Nutter)

=begin

Jumping in with JRuby perspective..

I suppose this would be easiest for us to implement by wrapping the

built-in TreeMap from Java:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/TreeMap.html

I have not looked over RBTree API, but hopefully there's nothing there

we couldn't implement atop TreeMap/TreeSet.

Charlie

=end

#16 - 03/23/2010 08:07 AM - spatulasnout (B Kelly)

=begin

Yusuke ENDOH wrote:

Hash doesn't provide fast search for partial string key.

 You mean prefix search, right?

And, can partial array key be handled?

 Ah, yes. Thanks, I did mean prefix.

And indeed, based on experiments in irb with array-based keys,

it does appear that lower_bound works with array key prefix

search.

puts dict.upper_bound("mult") ?# => ["fulsome", "baz/doc3.txt"]

 Is this correct? I expect it to return ["multivitamins", "foo/doc1.txt"]

or ["multivitamins", "bar/doc2.txt"].

 I had assumed it worked like std::map upper_bound

(http://www.cplusplus.com/reference/stl/map/upper_bound/)

returning "first element in the container whose key compares

greater than x."

However, in rbtree's dict.c, dict_upper_bound() is documented

as:

/*

Look for the node corresponding to the greatest key that is equal to or

lower than the given key. If there is no such node, return null.

*/

So, its behavior does not seem to match the comment. (I

06/11/2025 12/17

http://java.sun.com/j2se/1.5.0/docs/api/java/util/TreeMap.html
http://www.cplusplus.com/reference/stl/map/upper_bound/

don't know whether to consider the comment wrong, or the

behavior wrong. :)

Regards,

Bill

=end

#17 - 04/04/2010 01:28 AM - znz (Kazuhiro NISHIYAMA)

- Target version changed from 1.9.2 to 2.0.0

=begin

=end

#18 - 10/07/2011 01:49 AM - dgraham (David Graham)

Is there a chance RBTree can be added to the standard library for Ruby 2.0? I've needed it to implement priority queues and key range scans, but

the binary gem doesn't play well with JRuby or Rubinius. It would help if we could count on this data structure being included with Ruby.

Thanks!

David

#19 - 10/07/2011 03:03 AM - JEG2 (James Gray)

I still agree. We've literally been asking for NArray and RBTree in the standard library for years. Pretty please? :)

#20 - 10/07/2011 05:22 AM - spatulasnout (B Kelly)

I wholeheartedly agree about the usefulness of the data structure.

I'm hesitant to type this, because I don't want to impede RBTree's path toward first-class citizenship.

But last time I checked there appeared to be some API deficiencies that significantly limited RBTree's potential usefulness:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28860

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28879

Although I suppose it's possible these could be addressed at a later date?

Regards,

Bill

#21 - 10/07/2011 07:23 AM - rkh (Konstantin Haase)

SortedSet could then depend on it properly instead of the voodoo code that ships with Ruby atm.

Konstantin

On Oct 6, 2011, at 13:22 , B Kelly wrote:

Issue #2348 has been updated by B Kelly.

I wholeheartedly agree about the usefulness of the data structure.

I'm hesitant to type this, because I don't want to impede RBTree's path toward first-class citizenship.

But last time I checked there appeared to be some API deficiencies that significantly limited RBTree's potential usefulness:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28860

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28879

Although I suppose it's possible these could be addressed at a later date?

Regards,

Bill

Feature #2348: RBTree Should be Added to the Standard Library

http://redmine.ruby-lang.org/issues/2348

06/11/2025 13/17

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28860
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28879
https://bugs.ruby-lang.org/issues/2348
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28860
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/28879
https://bugs.ruby-lang.org/issues/2348
http://redmine.ruby-lang.org/issues/2348

Author: James Gray

Status: Assigned

Priority: Normal

Assignee: Yukihiro Matsumoto

Category: lib

Target version: 1.9.x

¾gin

The merits of this library have been discussed on Ruby core, with the strengths best summarized by this post:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602

RBTree has now been fixed to run on Ruby 1.9:

http://github.com/skade/rbtree

I think we should now give serious consideration to bringing it into the standard library.

#22 - 10/07/2011 08:53 AM - ko1 (Koichi Sasada)

(2011/10/07 1:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0? I've needed it to implement priority queues and key range scans,

but the binary gem doesn't play well with JRuby or Rubinius. It would help if we could count on this data structure being included with Ruby.

 Gem is not enough?

--

// SASADA Koichi at atdot dot net

#23 - 10/07/2011 09:53 AM - Anonymous

On Thu, Oct 6, 2011 at 6:34 PM, SASADA Koichi ko1@atdot.net wrote:

(2011/10/07 1:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0? I've needed it to implement priority queues and key range

scans, but the binary gem doesn't play well with JRuby or Rubinius. It would help if we could count on this data structure being included

with Ruby.

 Gem is not enough?

 I guess I just feel I would use RBTree and NArray a lot more than some

things we have in the standard library. It's about the same

usefulness as Set, in my opinion. Maybe even a little more.

James Edward Gray II

#24 - 10/07/2011 10:23 AM - ko1 (Koichi Sasada)

(2011/10/07 9:46), James Gray wrote:

On Thu, Oct 6, 2011 at 6:34 PM, SASADA Koichi ko1@atdot.net wrote:

(2011/10/07 1:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0? I've needed it to implement priority queues and key

range scans, but the binary gem doesn't play well with JRuby or Rubinius. It would help if we could count on this data structure being

included with Ruby.

 Gem is not enough?

 I guess I just feel I would use RBTree and NArray a lot more than some

things we have in the standard library. It's about the same

usefulness as Set, in my opinion. Maybe even a little more.

 Some people think most of standard libraries should be in gem. I think

06/11/2025 14/17

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/26602
http://github.com/skade/rbtree
mailto:ko1@atdot.net
mailto:ko1@atdot.net

you need to persuade them.

--

// SASADA Koichi at atdot dot net

#25 - 10/07/2011 10:23 AM - Anonymous

On Thu, Oct 6, 2011 at 8:07 PM, SASADA Koichi ko1@atdot.net wrote:

Some people think most of standard libraries should be in gem. I think

you need to persuade them.

 I sympathize, but we are still adding new libraries as of Ruby 1.9.3

and people have literally been wanting these two for years. I'm not

clear on why some libraries make it but these don't.

James Edward Gray II

#26 - 10/07/2011 10:29 AM - Anonymous

On Oct 6, 2011, at 9:07 PM, SASADA Koichi wrote:

Some people think most of standard libraries should be in gem. I think

you need to persuade them.

 I think the intent is for RBTree to be included with the Ruby distribution via the standard library or via 'standard gems'. That is to say, the inclusion of

RBTree into the standard Ruby 'distribution' is orthogonal to whether the standard distribution packages the standard library as gems or not.

Gary Wright

#27 - 10/07/2011 11:23 AM - mrkn (Kenta Murata)

(2011.10.07 01:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0?

 I agree with you if the library name is changed.

The name of RBTree is too specific to its internal algorithm.

If we adopt RBTree, we must change the name of the library after

more better algorithms would be discovered.

--

Kenta Murata muraken@gmail.com

1D69 ADDE 081C 9CC2 2E54 98C1 CEFE 8AFB 6081 B062

#28 - 10/07/2011 03:23 PM - cjheath (Clifford Heath)

On 07/10/2011, at 1:16 PM, Kenta Murata wrote:

(2011.10.07 01:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0?

I agree with you if the library name is changed.

The name of RBTree is too specific to its internal algorithm.

If we adopt RBTree, we must change the name of the library after

more better algorithms would be discovered.

I agree. Hash is not named after the hashing algorithm that's being used,

and Array is not named after its structure either.

For sorted structures, I've previously used the name Sequence. I think

this name would be suitable.

I also wish that Ruby had this container type available as a standard.

Clifford Heath.

#29 - 10/07/2011 11:23 PM - Anonymous

On Fri, Oct 7, 2011 at 1:20 AM, Clifford Heath clifford.heath@gmail.com wrote:

06/11/2025 15/17

mailto:ko1@atdot.net
mailto:muraken@gmail.com
mailto:clifford.heath@gmail.com

On 07/10/2011, at 1:16 PM, Kenta Murata wrote:

(2011.10.07 01:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0?

I agree with you if the library name is changed.

The name of RBTree is too specific to its internal algorithm.

If we adopt RBTree, we must change the name of the library after

more better algorithms would be discovered.

I agree. Hash is not named after the hashing algorithm that's being used,

and Array is not named after its structure either.

For sorted structures, I've previously used the name Sequence. I think

this name would be suitable.

I also wish that Ruby had this container type available as a standard.

 I think Tree would be a fine name and closer to Hash.

James Edward Gray II

#30 - 10/08/2011 06:54 AM - cjheath (Clifford Heath)

On 08/10/2011, at 1:10 AM, James Gray wrote:

On Fri, Oct 7, 2011 at 1:20 AM, Clifford Heath clifford.heath@gmail.com wrote:

On 07/10/2011, at 1:16 PM, Kenta Murata wrote:

(2011.10.07 01:50), David Graham wrote:

Is there a chance RBTree can be added to the standard library for Ruby 2.0?

I agree with you if the library name is changed.

The name of RBTree is too specific to its internal algorithm.

If we adopt RBTree, we must change the name of the library after

more better algorithms would be discovered.

I agree. Hash is not named after the hashing algorithm that's being used,

and Array is not named after its structure either.

For sorted structures, I've previously used the name Sequence. I think

this name would be suitable.

I also wish that Ruby had this container type available as a standard.

 I think Tree would be a fine name and closer to Hash.

 Is there any part of the API which allows a user to know it's a Tree?

If so, why?

If it's not externally visible in the API, it should not appear in the name.

My 2c.

Clifford Heath.

#31 - 05/18/2012 10:33 AM - jvoorhis (Jeremy Voorhis)

I think that Ruby developers would definitely benefit from having a range of well-implemented data structures within reach. I don't understand why the

implementation-revealing name is an issue when our most common options are already named Array [contiguous chunk of memory] and Hash[-table].

Renaming this library's classes to something SortedMap and SortedMultiMap seems incongruous.

#32 - 10/27/2012 05:08 AM - ko1 (Koichi Sasada)

ping. status?

#33 - 10/27/2012 08:03 AM - matz (Yukihiro Matsumoto)

06/11/2025 16/17

mailto:clifford.heath@gmail.com

- Target version changed from 2.0.0 to 2.6

I am not positive about adding a new library to the distribution while we are discussion moving toward gems.

I am not refusuig, however, so I label this "next minor".

Matz.

#34 - 01/21/2014 05:06 PM - zzak (zzak _)

Theres a discussion going on about possibly removing dependency on RBTree, or SortedSet all together.

Please see #9121

#35 - 08/27/2014 03:29 AM - hsbt (Hiroshi SHIBATA)

- Related to Feature #9121: [PATCH] Remove rbtree implementation of SortedSet due to performance regression added

#36 - 10/22/2017 02:14 AM - mame (Yusuke Endoh)

Three points:

If RBTree gem is bundled, we will do so by using the (recently-established) framework of bundled gems.

The current framework of bundled gems does not support extension library (maybe). We need to improve the framework first.

After that, we must decide if RBTree gem should be bundled or not.

#37 - 10/23/2017 04:26 AM - knu (Akinori MUSHA)

Honestly, I have no idea if this library is or can become popular.

SortedSet was originally meant to be an example implementation to show what it is like to implement a subclass of Set with an alternative data

structure or an additional algorithm, because I designed Set with consideration so that it is easily extensible unlike stock container classes like Hash

and Array. Actually I wrote two examples: SortedSet and RestrictedSet, and the latter was kept in the document as I was unsure if it was practically

useful.

So, it was not my point to promote rbtree as standard library, but just to show Hash is not the only possible backend for Set.

#38 - 11/29/2017 07:37 AM - matz (Yukihiro Matsumoto)

- Status changed from Assigned to Rejected

Unlike the past, it's not smart to add the standard library. Use gem.

Matz.

Powered by TCPDF (www.tcpdf.org)

06/11/2025 17/17

https://bugs.ruby-lang.org/issues/9121
http://www.tcpdf.org

