
Ruby - Feature #3436

Spawn the timer thread lazily

06/13/2010 08:31 PM - mxey (Maximilian Gass)

Status: Closed

Priority: Normal

Assignee:

Target version:

Description

=begin

As discussed in http://redmine.ruby-lang.org/issues/show/1820, Ruby 1.9.1

always spawns a timer thread which is required to handle scheduling of Ruby

threads. Rubinius did the same and I suggested to only spawn the thread if it

is required, only when Ruby threading is used. I don't know anything about the

internals of Ruby, but could this method be used in MRI as well?

The timer thread prevents the CPU from going idle and saving power/battery, so it would be nice to avoid it.

=end

Related issues:

Has duplicate Ruby - Bug #3919: Ruby in PowerTOP - too many CPU wakeups Closed 10/08/2010

History

#1 - 06/15/2010 06:05 AM - coatl (caleb clausen)

=begin

Unfortunately, that timer thread is also somehow involved with the select statement that lurks at the bottom of ruby's io system like tiamat in the

deepest pit of hell. If you get rid of the timer thread, you break io. I don't exactly understand what that code is doing, myself. If I did, I might be able to

create a patch that obviates the need for the timer thread at all. Does anyone understand thread_timer sufficiently well to explain it? Why does it call

ubf_select_each?

=end

#2 - 10/05/2010 03:09 AM - Spakman (Mark Somerville)

- File bug_3436-spawn_the_timer_thread_lazily.patch added

=begin

I've attached a patch to fix this.

The thread is now only used when it is required to schedule Ruby threads. When there is only the main thread, signals are handled immediately in

sighandler().

I only have access to Linux boxes. One of the added tests isn't used on other platforms.

=end

#3 - 10/08/2010 11:13 PM - nobu (Nobuyoshi Nakada)

=begin

Hi,

At Tue, 5 Oct 2010 03:09:42 +0900,

Mark Somerville wrote in [ruby-core:32686]:

The thread is now only used when it is required to schedule

Ruby threads. When there is only the main thread, signals are

handled immediately in sighandler().

 Seems almost fine. Since aded missing prototypes, no needs to

move some functions now.

I only have access to Linux boxes. One of the added tests

isn't used on other platforms.

 Updated patch with new test.

06/14/2025 1/11

http://redmine.ruby-lang.org/issues/show/1820
https://blade.ruby-lang.org/ruby-core/32686

diff --git c/ext/-test-/thread/timer/extconf.rb w/ext/-test-/thread/timer/extconf.rb

new file mode 100644

index 0000000..a28904b

--- /dev/null

+++ w/ext/-test-/thread/timer/extconf.rb

@@ -0,0 +1,3 @@

+require 'mkmf'

+$INCFLAGS << " -I$(top_srcdir)"

+create_makefile('-test-/thread/timer')

diff --git c/ext/-test-/thread/timer/timer.c w/ext/-test-/thread/timer/timer.c

new file mode 100644

index 0000000..6d77b1c

--- /dev/null

+++ w/ext/-test-/thread/timer/timer.c

@@ -0,0 +1,15 @@

+#include <ruby.h>

+#include "vm_core.h"

+

+VALUE

+thread_timer_thread_running_p(VALUE klass)

+{

return rb_thread_timer_thread_is_running() ? Qtrue : Qfalse;

+}

+void

+Init_timer(void)

+{

VALUE timer = rb_define_module_under(rb_cThread, "Timer");

rb_define_module_function(timer, "running?", thread_timer_thread_running_p, 0);

+}

diff --git c/process.c w/process.c

index 55b83b1..3a35725 100644

--- c/process.c

+++ w/process.c

@@ -998,7 +998,7 @@ static int forked_child = 0;

#define before_exec()

(rb_enable_interrupt(), (void)(forked_child ? 0 : (rb_thread_stop_timer_thread(), 1)))

#define after_exec() \

(rb_thread_reset_timer_thread(), rb_thread_start_timer_thread(), forked_child = 0, rb_disable_interrupt())

(rb_thread_reset_timer_thread(), rb_thread_start_timer_thread(), forked_child = 0)

#define before_fork() before_exec()

#define after_fork() (GET_THREAD()->thrown_errinfo = 0, after_exec())

diff --git c/signal.c w/signal.c

index ba35954..ce44d81 100644

--- c/signal.c

+++ w/signal.c

@@ -519,6 +519,10 @@ sighandler(int sig)

#if !defined(BSD_SIGNAL) && !defined(POSIX_SIGNAL)

ruby_signal(sig, sighandler);

#endif

+

if (rb_thread_alone()) {

rb_threadptr_check_signal(GET_THREAD());

}

}

int

diff --git c/test/ruby/test_signal.rb w/test/ruby/test_signal.rb

index 0098ccc..6371d8b 100644

--- c/test/ruby/test_signal.rb

+++ w/test/ruby/test_signal.rb

@@ -181,4 +181,20 @@ class TestSignal < Test::Unit::TestCase

w.close

assert_equal(r.read, "foo")

end

+

def test_signals_before_and_after_timer_thread

06/14/2025 2/11

count = 0

Signal.trap(:INT) { count += 1 }

Process.kill :INT, Process.pid

assert_equal 1, count

th = Thread.new { sleep 0.5 }

Process.kill :INT, Process.pid

assert_equal 2, count

th.join

Process.kill :INT, Process.pid

assert_equal 3, count

end

end

diff --git c/test/thread/test_timer_thread.rb w/test/thread/test_timer_thread.rb

new file mode 100644

index 0000000..b732aa0

--- /dev/null

+++ w/test/thread/test_timer_thread.rb

@@ -0,0 +1,10 @@

+require 'test/unit'

+require '-test-/thread/timer'

+class TestTimerThread < Test::Unit::TestCase

def test_timer_is_created_and_destroyed

assert !Thread::Timer.running?

assert Thread.new {Thread::Timer.running?}.value

assert !Thread::Timer.running?

end

+end

diff --git c/thread.c w/thread.c

index 11c87be..471140e 100644

--- c/thread.c

+++ w/thread.c

@@ -562,6 +562,7 @@ thread_create_core(VALUE thval, VALUE args, VALUE (*fn)(ANYARGS))

th->status = THREAD_KILLED;

rb_raise(rb_eThreadError, "can't create Thread (%d)", err);

}

rb_thread_start_timer_thread();

return thval;

}

@@ -577,6 +578,7 @@ thread_s_new(int argc, VALUE *argv, VALUE klass)

rb_raise(rb_eThreadError, "uninitialized thread - check `%s#initialize'",

rb_class2name(klass));

}

rb_thread_start_timer_thread();

return thread;

}

@@ -711,6 +713,12 @@ thread_join(rb_thread_t *target_th, double delay)

thread_debug("thread_join: success (thid: %p)\n",

(void *)target_th->thread_id);

rb_disable_interrupt();

if (rb_thread_alone() && rb_signal_buff_size() == 0) {

rb_thread_stop_timer_thread();

}

rb_enable_interrupt();

if (target_th->errinfo != Qnil) {

VALUE err = target_th->errinfo;

@@ -2723,7 +2731,15 @@ void

rb_thread_start_timer_thread(void)

{

system_working = 1;

rb_thread_create_timer_thread();

if (!rb_thread_alone()) {

rb_thread_create_timer_thread();

06/14/2025 3/11

}

+}

+int

+rb_thread_timer_thread_is_running(void)

+{

return native_timer_thread_is_running();

}

static int

@@ -4262,7 +4278,7 @@ Init_Thread(void)

}

}

rb_thread_create_timer_thread();

rb_thread_start_timer_thread();

(void)native_mutex_trylock;

}

diff --git c/thread_pthread.c w/thread_pthread.c

index e835bf8..b229b32 100644

--- c/thread_pthread.c

+++ w/thread_pthread.c

@@ -840,6 +840,12 @@ native_reset_timer_thread(void)

timer_thread_id = 0;

}

+static int

+native_timer_thread_is_running(void)

+{

return timer_thread_id != 0;

+}

#ifdef HAVE_SIGALTSTACK

int

ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)

diff --git c/thread_win32.c w/thread_win32.c

index 9e64ea4..e52f8de 100644

--- c/thread_win32.c

+++ w/thread_win32.c

@@ -590,4 +590,10 @@ native_reset_timer_thread(void)

}

}

+static int

+native_timer_thread_is_running(void)

+{

return timer_thread_id != 0;

+}

#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */

diff --git c/vm_core.h w/vm_core.h

index e43f539..7dc4b8d 100644

--- c/vm_core.h

+++ w/vm_core.h

@@ -635,6 +635,7 @@ VALUE rb_iseq_eval(VALUE iseqval);

VALUE rb_iseq_eval_main(VALUE iseqval);

void rb_enable_interrupt(void);

void rb_disable_interrupt(void);

+int rb_thread_timer_thread_is_running(void);

#if defined GNUC && GNUC >= 4

#pragma GCC visibility pop

#endif

--

Nobu Nakada

06/14/2025 4/11

=end

#4 - 10/08/2010 11:36 PM - ko1 (Koichi Sasada)

=begin

(2010/10/08 15:12), Nobuyoshi Nakada wrote:

Hi,

At Tue, 5 Oct 2010 03:09:42 +0900,

Mark Somerville wrote in [ruby-core:32686]:

The thread is now only used when it is required to schedule

Ruby threads. When there is only the main thread, signals are

handled immediately in sighandler().

 Seems almost fine. Since aded missing prototypes, no needs to

move some functions now.

 Timer thread also handles signals.

I'm not sure that your patch work fine.

--

// SASADA Koichi at atdot dot net

=end

#5 - 10/10/2010 01:28 AM - Spakman (Mark Somerville)

=begin

On Fri, Oct 08, 2010 at 11:12:47PM +0900, Nobuyoshi Nakada wrote:

Updated patch with new test.

 The new test is much better, thanks a lot.

On Fri, Oct 08, 2010 at 11:36:13PM +0900, SASADA Koichi wrote:

(2010/10/08 15:12), Nobuyoshi Nakada wrote:

At Tue, 5 Oct 2010 03:09:42 +0900,

Mark Somerville wrote in [ruby-core:32686]:

The thread is now only used when it is required to schedule

Ruby threads. When there is only the main thread, signals are

handled immediately in sighandler().

 Seems almost fine. Since aded missing prototypes, no needs to

move some functions now.

 Timer thread also handles signals.

I'm not sure that your patch work fine.

 The signal handling has not required too many changes - signals are

still added to signal_buff when they are received and in multi-threaded

programs the timer thread is still used to tell the main thread to

process them. In single-threaded programs however, the signals in

signal_buff are processed within sighandler() immediately, since the

timer thread doesn't exist.

I've attached a slightly improved patch which fixes a rare case when the

timer thread may not be stopped correctly after the last thread has

exited.

Attachment: (unnamed)

Attachment: (unnamed)

=end

#6 - 10/10/2010 02:21 AM - Spakman (Mark Somerville)

06/14/2025 5/11

https://blade.ruby-lang.org/ruby-core/32686
https://blade.ruby-lang.org/ruby-core/32686

=begin

On Sun, Oct 10, 2010 at 01:27:53AM +0900, Mark Somerville wrote:

I've attached a slightly improved patch which fixes a rare case when the

timer thread may not be stopped correctly after the last thread has

exited.

 Oops! Please ignore the previous patch and consider this one instead -

in an attempt to trigger the rare bug that I mentioned above, I had

altered one of the conditionals, but forgot to change it back. Sorry!

Attachment: (unnamed)

Attachment: (unnamed)

=end

#7 - 10/13/2010 11:18 PM - Spakman (Mark Somerville)

=begin

On Sun, Oct 10, 2010 at 02:21:41AM +0900, Mark Somerville wrote:

On Sun, Oct 10, 2010 at 01:27:53AM +0900, Mark Somerville wrote:

I've attached a slightly improved patch which fixes a rare case when the

timer thread may not be stopped correctly after the last thread has

exited.

How can I move this patch forward? Are there any objections to it being

merged? If so, I'd love to try to fix them.

Without the patch, PowerTOP shows that Ruby trunk (-e "sleep 60") is a

bad offender when it comes to CPU wakeups:

 Wakeups-from-idle per second : 127.2 interval: 15.0s

 no ACPI power usage estimate available

 Top causes for wakeups:

 43.1% (99.5) ruby : hrtimer_start_range_ns

 (hrtimer_wakeup)

 22.6% (52.1) <kernel core> : hrtimer_start_range_ns

 (tick_sched_timer)

 5.5% (12.8) <interrupt> : ahci

 5.2% (12.0) <kernel core> : __mod_timer (rh_timer_func)

 4.7% (10.7) <kernel core> : hrtimer_start

(tick_sched_timer)

 3.8% (8.8) chromium-browse : hrtimer_start_range_ns

 (hrtimer_wakeup)

 ...

 With the patch applied, Ruby doesn't make it onto the (untruncated) list

at all:

 Wakeups-from-idle per second : 68.9 interval: 15.0s

 no ACPI power usage estimate available

 Top causes for wakeups:

 45.2% (50.9) <kernel core> : hrtimer_start_range_ns

 (tick_sched_timer)

 10.8% (12.2) <kernel core> : __mod_timer (rh_timer_func)

 10.7% (12.0) <interrupt> : ahci

 10.1% (11.3) <kernel core> : hrtimer_start

(tick_sched_timer)

 3.4% (3.8) chromium-browse : __mod_timer

(process_timeout)

 2.5% (2.9) chromium-browse : hrtimer_start_range_ns

 (hrtimer_wakeup)

 ...

 I've attached an update that makes the patch apply cleanly again after

some changes were made to trunk.

Attachment: (unnamed)

Attachment: (unnamed)

=end

06/14/2025 6/11

#8 - 10/13/2010 11:41 PM - ko1 (Koichi Sasada)

=begin

(2010/10/13 15:18), Mark Somerville wrote:

How can I move this patch forward? Are there any objections to it being

merged? If so, I'd love to try to fix them.

 Yes, I have. Two reasons.

(1) You missed signal problem which cause critical timing bug. Please

read thread_timer() on the thread_pthread.c. It is tough for me to

describe the behavior in English.

In short, we need to repeat sending a signal to wake-up the target ruby

thread completely.

ex) How to wake up the thread?

 check_signal();

 <- receive signal at this timing

 select(..., infinitely);

 The thread never wake-up. Generally, to avoid this timing issue,

pselect(2) is provided. However, select(2) is not only blocking system

calls on the Ruby's case.

(2) Performance issue. Your patch start/kill the timer thread. In

general, the native thread creation/deletion cause some performance issue.

I understand your issue. In fact, I'm considering this problem and

seeking the solution in recent months.

Could you wait for some days? I may show the another idea.

BTW, recent python solve with some clever (complex, for me) method.

http://www.dabeaz.com/python/UnderstandingGIL.pdf

--

// SASADA Koichi at atdot dot net

=end

#9 - 10/15/2010 12:46 AM - Spakman (Mark Somerville)

=begin

Hi Koichi,

On Wed, Oct 13, 2010 at 11:40:52PM +0900, SASADA Koichi wrote:

It is tough for me to describe the behavior in English.

 OK.

ex) How to wake up the thread?

check_signal();

 <- receive signal at this timing

select(..., infinitely);

Would this occur if rb_signal_buff_size() > 1 and we process a signal

with a handler that calls a blocking function?

(2) Performance issue. Your patch start/kill the timer thread. In

general, the native thread creation/deletion cause some performance issue.

 I assumed (perhaps incorrectly) that the overhead was small enough and

the creation and deletion uncommon enough that it wouldn't be a problem.

Perhaps there could be a method of increasing the time the timer thread

06/14/2025 7/11

http://www.dabeaz.com/python/UnderstandingGIL.pdf

waits if rb_thread_alone() and creation of a new thread could reduce

this again.

I understand your issue. In fact, I'm considering this problem and

seeking the solution in recent months.

 It seems to me that we are attempting different things. I have been

primarily concerned with reducing/removing CPU wakeups in the

single-threaded case and falling back to the timer thread when

multi-threaded. Assuming, I understand you correcly, you appear to be

trying to remove the timer thread completely.

If you are trying to remove the timer thread altogether, that's

great news and I won't bother carrying this patch on!

Could you wait for some days? I may show the another idea.

 Sure. I'll be interested to see it!

BTW, recent python solve with some clever (complex, for me) method.

http://www.dabeaz.com/python/UnderstandingGIL.pdf

 Really interesting reading.

Thanks a lot, very useful!

Attachment: (unnamed)

=end

#10 - 10/15/2010 01:10 AM - ko1 (Koichi Sasada)

=begin

Hi,

(2010/10/14 16:45), Mark Somerville wrote:

ex) How to wake up the thread?

check_signal();

 <- receive signal at this timing

select(..., infinitely);

Would this occur if rb_signal_buff_size() > 1 and we process a signal

with a handler that calls a blocking function?

 I can't understand your situation.

My situation is occur if signal received at pointed by :

thread.c:2504

BLOCKING_REGION({

/* !!! !!! */

result = select(n, read, write, except, timeout);

if (result < 0) lerrno = errno;

}, ubf_select, GET_THREAD());

is

"after signal checking" and

"before calling system call".

(2) Performance issue. Your patch start/kill the timer thread. In

general, the native thread creation/deletion cause some performance issue.

 I assumed (perhaps incorrectly) that the overhead was small enough and

the creation and deletion uncommon enough that it wouldn't be a problem.

 I agree that is it not huge performance issue.

06/14/2025 8/11

http://www.dabeaz.com/python/UnderstandingGIL.pdf

Perhaps there could be a method of increasing the time the timer thread

waits if rb_thread_alone() and creation of a new thread could reduce

this again.

 My idea is keep the timer thread sleep infinity while only one thread is

running.

I understand your issue. In fact, I'm considering this problem and

seeking the solution in recent months.

 It seems to me that we are attempting different things. I have been

primarily concerned with reducing/removing CPU wakeups in the

single-threaded case and falling back to the timer thread when

multi-threaded. Assuming, I understand you correcly, you appear to be

trying to remove the timer thread completely.

 I think we are aimed to solve same problem. I also want to reduce CPU

wake up counts. And currently I think we can't remove timer thread.

--

// SASADA Koichi at atdot dot net

=end

#11 - 11/11/2010 02:24 AM - alvherre (Alvaro Herrera)

=begin

May I point you to the solution that PostgreSQL implemented to solve this exact problem? It is here:

http://git.postgresql.org/gitweb?p=postgresql.git;a=tree;f=src/backend/port;hb=HEAD

See the files unix_latch.c and win32_latch.c. They both implement the interface here:

http://git.postgresql.org/gitweb?p=postgresql.git;a=blob;f=src/include/storage/latch.h;hb=HEAD

This implementation is very efficient and very portable.

=end

#12 - 11/11/2010 02:25 AM - alvherre (Alvaro Herrera)

=begin

Forgoot to mention: since this is under a MIT-like license, you could simply lift this code and integrate it into Ruby.

=end

#13 - 11/11/2010 02:55 AM - ko1 (Koichi Sasada)

=begin

(2010/11/11 2:24), Alvaro Herrera wrote:

May I point you to the solution that PostgreSQL implemented to solve this exact problem? It is here:

 What do you mean "this exact problem"? Safety signal treatment?

I see the source code briefly, I can't understand which problem.

(WaitLatchOrSocket() seems to solve only a problem around "select()")

--

// SASADA Koichi at atdot dot net

=end

#14 - 11/11/2010 04:51 AM - alvherre (Alvaro Herrera)

=begin

Oh, now I see that I misread what you were saying. When you mentioned pselect() I thought that you meant that would have solved your problem but

you couldn't use it for some reason. Now I realize that you meant that you need to handle system calls other than select(), and so pselect() alone is

not enough.

It also doesn't help that this code is written to work on a multi-process environment where threads are forbidden. Since your code is thread-centric, it

would take some work to adapt, or perhaps it's downright impossible.

06/14/2025 9/11

http://git.postgresql.org/gitweb?p=postgresql.git;a=tree;f=src/backend/port;hb=HEAD
http://git.postgresql.org/gitweb?p=postgresql.git;a=blob;f=src/include/storage/latch.h;hb=HEAD

So please ignore me :-)

=end

#15 - 03/07/2011 07:26 PM - Spakman (Mark Somerville)

=begin

Koichi has proposed a potential solution to this problem in a ruby-core thread[1].

It would be great to get some more testing and feedback on this, since it seems to be a problem for a number of users.

[1] - http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456

=end

#16 - 03/07/2011 08:23 PM - Spakman (Mark Somerville)

=begin

I apologise in advance if this is a duplicate message. I previously

posted this on redmine.ruby-lang.org, but immediately received mail

delivery errors regarding it. I simply don't have time to investigate

that.

It was meant to be a reply to the first post in this thread, but I can't

find that so here goes again:

Koichi has proposed a potential solution to this problem in a ruby-core

thread[1].

[1] - http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456

=end

#17 - 04/20/2011 10:12 PM - sunaku (Suraj Kurapati)

=begin

It seems Mark was the only person to review ((<Ko1's patch|URL:http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456>)).

What do the other Ruby developers think about it?

Will it not be committed because it lacks Windows support?

Thanks for your consideration.

=end

#18 - 05/10/2011 08:53 AM - Spakman (Mark Somerville)

I'm repeating what I said in another thread to catch people that have subscribed to this bug.

Suraj Kurapati wrote:

It seems Mark was the only person to review ((<Ko1's patch|URL:http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456>)).

What do the other Ruby developers think about it?

Will it not be committed because it lacks Windows support?

Thanks for your consideration.

 With the 1.9.2 release schedule now public and rather imminent, now is the time to get this tested and reviewed.

I really think this regression should be fixed for 1.9.3 - if you do too, please help make it happen!

#19 - 06/29/2011 10:44 PM - kosaki (Motohiro KOSAKI)

- Status changed from Open to Closed

Fixed by r32244.

#20 - 07/01/2011 12:23 AM - Spakman (Mark Somerville)

On Wed, Jun 29, 2011 at 10:44:59PM +0900, Motohiro KOSAKI wrote:

Issue #3436 has been updated by Motohiro KOSAKI.

Status changed from Open to Closed

06/14/2025 10/11

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456%3E
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/33456%3E
https://bugs.ruby-lang.org/issues/3436

Fixed by r32244.

 Thank you very much and well done to everyone involved - it's working

nicely for me (F14, x86_64).

Files

bug_3436-spawn_the_timer_thread_lazily.patch 4.9 KB 10/05/2010 Spakman (Mark Somerville)

noname 207 Bytes 03/07/2011 Spakman (Mark Somerville)

noname 207 Bytes 04/12/2011 Spakman (Mark Somerville)

noname 207 Bytes 04/12/2011 Spakman (Mark Somerville)

noname 207 Bytes 07/01/2011 Spakman (Mark Somerville)

Powered by TCPDF (www.tcpdf.org)

06/14/2025 11/11

http://www.tcpdf.org

