
Ruby - Feature #4824

Provide method Kernel#executed?

06/04/2011 07:59 PM - lazaridis.com (Lazaridis Ilias)

Status: Assigned

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

Description

The current construct to execute main code looks not very elegant:

if __FILE__ == $0

 my_main() # call any method or execute any code

end

 With a Kernel#executed? method, this would become more elegant:

if executed?

 #do this

 #do that

 my_main()

end

 or

main() if executed?

 This addition would not break any existent behaviour.

History

#1 - 06/04/2011 11:16 PM - matz (Yukihiro Matsumoto)

I agree providing a method to tell whether it is loaded as a library or is executed as a command is more elegant than 'FILE == $0', but I am still afraid

#executed? can mean multiple ways so that the name can cause confusion. We need a better name.

#2 - 06/04/2011 11:53 PM - Cezary (Cezary Baginski)

On Sat, Jun 04, 2011 at 11:17:01PM +0900, Yukihiro Matsumoto wrote:

I agree providing a method to tell whether it is loaded as a library

or is executed as a command is more elegant than 'FILE == $0',

but I am still afraid #executed? can mean multiple ways so that the

name can cause confusion. We need a better name.

 How about the inverse or something similar:

 unless required? # top-level file, not require'd or loaded

 #main

 puts "hello from main"

 end

 This would also protect from main being run twice when the file

includes itself.

--

Cezary Baginski

#3 - 06/05/2011 03:53 AM - sdsykes (Stephen Sykes)

Some other suggestions:

if main?

if first_script?

if main_script?

if run_script?

06/12/2025 1/18

 -Stephen

#4 - 06/05/2011 03:01 PM - lazaridis.com (Lazaridis Ilias)

Some notes subjecting the naming:

The clarity of the method name should be rated in it's OO context, like this:

if self.executed? # or .started? .launched?, which means *not* .included? .required? .loaded?

 # do main code

end

 similarly, one could write:

unless self.executed?

 # do inclusion code

end

 "self" would be "the module" or "the file" or "the main object"

Possibly the most simple word would be "main?", but strictly from a OO view, this would be not correct.

Although, from a user view, it looks simple and recognizable:

if main?

 do main stuff

end

unless main?

 do inclusion stuff

end

 In any way, the name should be a compact one, e.g. without "_", like is_started?

#5 - 06/05/2011 04:29 PM - cjheath (Clifford Heath)

On 05/06/2011, at 4:01 PM, Lazaridis Ilias wrote:

The clarity of the method name should be rated in it's OO context,

like this:

 I dispute the need for a method. That just forces someone to the

documentation

to know what the code means.

The problem with the existing solution "if (__FILE__ == $0)" is that

the meaning is

hidden. If the variables were named differently, this would be exactly

the expression

that would best communicate the intent. To exaggerate, what we need is:

if __THIS_FILE__ == $THIS_PROGRAM

 ...

end

 That is, the problem is that it's not obvious to a newcomer that __FILE__ means

the current source-code file, or that $0 means the name of the script

being

executed. Especially the latter...

Clifford Heath.

#6 - 06/05/2011 10:29 PM - Eregon (Benoit Daloze)

Clifford Heath wrote:

That is, the problem is that it's not obvious to a newcomer that FILE means

the current source-code file, or that $0 means the name of the script

being executed. Especially the latter...

 $PROGRAM_NAME is an alias for $0.

But "if __FILE__ == $PROGRAM_NAME" is quite long.

06/12/2025 2/18

#7 - 06/06/2011 06:53 AM - cjheath (Clifford Heath)

On 05/06/2011, at 11:29 PM, Benoit Daloze wrote:

Clifford Heath wrote:

That is, the problem is that it's not obvious to a newcomer that

__FILE__ means

the current source-code file, or that $0 means the name of the script

being executed. Especially the latter...

 $PROGRAM_NAME is an alias for $0.

But "if __FILE__ == $PROGRAM_NAME" is quite long.

 Length is not a problem, if the text includes the meaning.

Things that are used often should be succinct, and the reader's

knowledge should be assumed. Things that are used only a

few times in a program do not need to be succinct.

To use an API call requires that the user knows (or looks up)

the meaning. This kind of semantic hiding is completely

unnecessary and counter-productive.

Clifford Heath.

#8 - 06/06/2011 02:51 PM - lazaridis.com (Lazaridis Ilias)

Clifford Heath wrote:

[...]

But "if __FILE__ == $PROGRAM_NAME" is quite long.

[...]

To use an API call requires that the user knows (or looks up)

the meaning. This kind of semantic hiding is completely

unnecessary and counter-productive.

[...]

So maybe all rarely used methods should be written in long descriptive statements, to overcome non-semantic-hiding and become more productive?

There's one simple fact:

"if __FILE__ == $PROGRAM_NAME" is inconsistent with the language's elegant OO design - and I don't think that anyone will counter this.

And at this point, the "dispute" is about the method name.

Which method name would you choose, if you had two choices (.main? | .executed?) ?

#9 - 06/06/2011 03:23 PM - cjheath (Clifford Heath)

On 06/06/2011, at 3:51 PM, Lazaridis Ilias wrote:

So maybe all rarely used methods should be written in long

descriptive statements, to overcome non-semantic-hiding and become

more productive?

 I thought you prided yourself on your ability to use reason?

Because the above is really an irrational statement, being

both a logical non-sequitur and unrelated to my argument.

There's one simple fact:

"if __FILE__ == $PROGRAM_NAME" is inconsistent with the language's

elegant OO design

 I think that's entirely false.

If I was explaining the intent of my code to you, I'd say

"If we're running this file", or "if this is the file we're running".

These have the same semantic structure as the Ruby code

above... completely unlike the suggestion you make.

06/12/2025 3/18

And at this point, the "dispute" is about the method name.

 No, it isn't. It's about how to make Ruby easier to read.

Which method name would you choose, if you had two choices (.main?

| .executed?) ?

 Neither. The meaning that is intended cannot be expressed using the

natural meaning of any single word. If the method was implemented,

I'd still write it out long-hand.

I want to minimise the cognitive load on people who read my code.

Clifford Heath.

#10 - 06/06/2011 08:50 PM - lazaridis.com (Lazaridis Ilias)

Clifford Heath wrote:

[...] - omitting, to focus on essence

And at this point, the "dispute" is about the method name.

 No, it isn't. It's about how to make Ruby easier to read.

 The status of this issue (#4824) is "agreed providing a method" (= provide an OO construct) and more actual "We need a better name." (Source: See

the first comment).

So, it's about to make the language easier to read, in context of an OO construct.

I've added some elaborations, subjecting the (OO method) name. Ideally, it would be one word, but it's possible to use something like this:

if this_file_is_equal_with_the_program_name?

 Although I dislike a two-word choice, the most logical seems to be this one:

if is_executed?

refers to the actual main object. the user has *anyway* to learn: there is a "self" behind, an object behind

if self.is_executed? # can be written with "self", to make it more clear

main() if self.is_program?

main() if is_program?

 So, the point is, to find a concise method name (ideally one word) which reads nice and fits in the overall existent naming scheme of the language.

(note that I "back-off" from this issue for now)

#11 - 06/06/2011 09:09 PM - rosenfeld (Rodrigo Rosenfeld Rosas)

Ruby allows a question mark in method names exactly for avoiding writing methods beggining with "is_" like in Java. I don't mind two word methods,

but I don't want the first word to be a "is" when it is finished with a question mark. That is redundant.

By the way, among suggestions, I prefer either main? or main_script?. Maybe aliases :)

#12 - 06/08/2011 04:53 PM - headius (Charles Nutter)

On Mon, Jun 6, 2011 at 7:09 AM, Rodrigo Rosenfeld Rosas

rr.rosas@gmail.com wrote:

Issue #4824 has been updated by Rodrigo Rosenfeld Rosas.

Ruby allows a question mark in method names exactly for avoiding writing methods beggining with "is_" like in Java. I don't mind two word

methods, but I don't want the first word to be a "is" when it is finished with a question mark. That is redundant.

By the way, among suggestions, I prefer either main? or main_script?. Maybe aliases :)

 I like main? as well. But I have a concern: the method would have to

be able to see the caller's context, along the lines of eval. I hate

the idea of adding more methods that can do that.

06/12/2025 4/18

https://bugs.ruby-lang.org/issues/4824
mailto:rr.rosas@gmail.com
https://bugs.ruby-lang.org/issues/4824

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ == $0. Something we can statically determine before runtime without

digging around in the caller's frame.

Charlie

#13 - 06/08/2011 06:23 PM - zenspider (Ryan Davis)

On Jun 8, 2011, at 00:44 , Charles Oliver Nutter wrote:

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ $0. Something we can statically determine before runtime without

digging around in the caller's frame.

 While I think the feature request is a bit inane to begin with, I think __MAIN__ is a beautifully pragmatic compromise. Easy to implement on all impls,

non-hacky, and yet makes its intention very clear.

#14 - 06/08/2011 08:29 PM - rosenfeld (Rodrigo Rosenfeld Rosas)

Em 08-06-2011 06:13, Ryan Davis escreveu:

On Jun 8, 2011, at 00:44 , Charles Oliver Nutter wrote:

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ == $0. Something we can statically determine before runtime without

digging around in the caller's frame.

While I think the feature request is a bit inane to begin with, I think __MAIN__ is a beautifully pragmatic compromise. Easy to implement on

all impls, non-hacky, and yet makes its intention very clear.

I like the idea too. I just think that Ruby is very simple to start with

because it is very consistent and with a few rules. Someone would expect

__MAIN__ to be a constant, which is not. Maybe something like __MAIN?

would show the contrast to something that seems to be like a constant

(MAIN) but doesn't seem at the same time (?). I know this is still

confusing, but I prefer something like this instead of a pure __MAIN__...

#15 - 06/08/2011 08:31 PM - rosenfeld (Rodrigo Rosenfeld Rosas)

Actually, maybe something like the snippet below would be ideal:

if defined?(__MAIN__) ...

 This means __MAIN__ is still a constant, but one defined by the interpreter in some conditional way that is injected only in a single file (the main one).

#16 - 06/08/2011 08:53 PM - spatulasnout (B Kelly)

Hi,

Rodrigo Rosenfeld Rosas wrote:

I like the idea too. I just think that Ruby is very simple to start with

because it is very consistent and with a few rules. Someone would expect

__MAIN__ to be a constant, which is not.

 Why would one expect __MAIN__ to be any more or less of a

constant than __FILE__ or __LINE__ or __method__ ?

Seems to me its behavior would be consistent with the others.

Regards,

Bill

#17 - 06/08/2011 09:23 PM - rosenfeld (Rodrigo Rosenfeld Rosas)

Em 08-06-2011 08:50, Bill Kelly escreveu:

Why would one expect __MAIN__ to be any more or less of a

constant than __FILE__ or __LINE__ or __method__ ?

Seems to me its behavior would be consistent with the others.

06/12/2025 5/18

 Hi Bill, yes, you're right. I agree with you. I didn't think about this

before :)

#18 - 06/08/2011 11:29 PM - nobu (Nobuyoshi Nakada)

Hi,

At Wed, 8 Jun 2011 16:44:55 +0900,

Charles Oliver Nutter wrote in [ruby-core:36833]:

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ == $0. Something we can statically determine before runtime without

digging around in the caller's frame.

 __FILE__.main?

--

Nobu Nakada

#19 - 06/08/2011 11:53 PM - rosenfeld (Rodrigo Rosenfeld Rosas)

Em 08-06-2011 11:28, Nobuyoshi Nakada escreveu:

Hi,

At Wed, 8 Jun 2011 16:44:55 +0900,

Charles Oliver Nutter wrote in [ruby-core:36833]:

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ == $0. Something we can statically determine before runtime without

digging around in the caller's frame.

 __FILE__.main?

 I loved this one!

#20 - 06/09/2011 01:13 AM - lazaridis.com (Lazaridis Ilias)

Nobuyoshi Nakada wrote:

Hi,

At Wed, 8 Jun 2011 16:44:55 +0900,

Charles Oliver Nutter wrote in [ruby-core:36833]:

I might be more inclined to a keyword or pseudo constant along the

lines of __FILE__, like __MAIN__ that produces true iff __FILE__ == $0. Something we can statically determine before runtime without

digging around in the caller's frame.

@C.O. Nutter

I you dislike "digging around in the caller's frame", then you can possibly implement it in a different way.

__FILE__.main?

 This is not an OO approach, even I would prefer to use "if __FILE__ == $0" instead.

I would expect to see __FILE__.main? in python, not in ruby.

There is already an object available, accessible via "self".

main? # read: is main?

 # do main stuff

end

 or

self.main? # read: self is main?

 # do main stuff

06/12/2025 6/18

bugs.ruby-lang.org/issues/4824
bugs.ruby-lang.org/issues/4824
bugs.ruby-lang.org/issues/4824

end

 in some way, self refers to the file or code module/object.

#21 - 06/09/2011 01:23 AM - mfn (Markus Fischer)

Hi,

I take the courtesy to hijack this because ...

On 08.06.2011 13:31, Rodrigo Rosenfeld Rosas wrote:

Issue #4824 has been updated by Rodrigo Rosenfeld Rosas.

Actually, maybe something like the snippet below would be ideal:

if defined?(__MAIN__) ...

 This means __MAIN__ is still a constant, but one defined by the interpreter in some conditional way that is injected only in a single file (the main

one).

 This "injected only in a single file" makes me wonder about one thing:

does Ruby in some way provide a per file context?

I guess those familiar with Python will recognize this immediately, as a

file is treated as a (python) module which has it's on scoping and

provides the ability for others to "import" only certain features of a

module/file you want.

I though it would give a nice addition to Ruby but as I understand it,

it would be quite radical as Ruby has the module keyword already and

things work (quite?) differently.

Markus

#22 - 06/09/2011 02:05 AM - lazaridis.com (Lazaridis Ilias)

Markus Fischer wrote:

Hi,

I take the courtesy to hijack this because ...

[...]

 Hijacking issues on an issue-tracking-system is really not the way to go.

Better open a new issue (or a new discussion topic) and place a link to it, if it's somehow related.

#23 - 06/10/2011 02:30 AM - lazaridis.com (Lazaridis Ilias)

Lazaridis Ilias wrote:

Nobuyoshi Nakada wrote:

[...]

__FILE__.main?

 This is not an OO approach, even I would prefer to use "if __FILE__ == $0" instead.

I would expect to see __FILE__.main? in python, not in ruby.

There is already an object available, accessible via "self".

[...]

self.main? # read: self is main?

 # do main stuff

end

 in some way, self refers to the file or code module/object.

 Correcting myself:

06/12/2025 7/18

https://bugs.ruby-lang.org/issues/4824

Taking in account that "self" refers to the "main" object (the global object) and not to the file object (as it should, from my point of view), possibly this

one could do it:

FILE.executed?

 (this could get a related method: FILE.imported?)

Is there anything that disallows usage of "FILE" instead of "__FILE__"? I personally cannot look at those __x__ things when writing OO (one reason I

dropped python).

A convention like: CAPITALS for immutable constant objects (without those __ __)?

#24 - 06/10/2011 04:49 AM - Cezary (Cezary Baginski)

This may seem like heresy, but isn't really:

__FILE__ == $0

 just a hack for letting a file be both a script and a "library" at the same time? With the only sane use (I can think of) being adding unit tests?

This was probably useful in the early years of Ruby, but now with the internet, social coding, methodologies, TDD, BDD, packaging (gems), etc. -

doesn't it make more sense to have tests and scripts in separate files?

Why add a construct for handling a block of code that cannot be called in any other way, than running the script directly, creating dead code that isn't

included in coverage?

#25 - 06/10/2011 07:20 AM - rocky (Rocky Bernstein)

Cezary Baginski wrote:

This may seem like heresy, but isn't really:

__FILE__ == $0

 just a hack for letting a file be both a script and a "library" at the same time? With the only sane use (I can think of) being adding unit tests?

 I wrote my thoughts regarding this to ruby-core on June 5-6. See http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/36772. But I realize that

doesn't get reflected here in redmine.

It has one answer to your question which, in sum, is "demo code". Demonstration code is not the same as a unit test.

But there is another use. One can write a program that has a command-line interface, but folks can use this as a library instead. For example see,

https://github.com/rocky/ps-watcher

This was probably useful in the early years of Ruby, but now with the internet, social coding, methodologies, TDD, BDD, packaging (gems), etc. -

doesn't it make more sense to have tests and scripts in separate files?

Why add a construct for handling a block of code that cannot be called in any other way, than running the script directly, creating dead code that

isn't included in coverage?

#26 - 06/10/2011 09:08 AM - rbjl (Jan Lelis)

I'd still prefer a Kernel method - It's about better readability, isn't it? My favourites:

directly_executed?

standalone?

 If it should be some kind of keyword, I can't see any serious issue against the __MAIN__ solution. It's true in the "main" file, false in all others and

if __MAIN__

 looks OK.

#27 - 06/10/2011 09:53 PM - austin (Austin Ziegler)

On Thu, Jun 9, 2011 at 3:49 PM, Cezary Baginski

cezary.baginski@gmail.com wrote:

Issue #4824 has been updated by Cezary Baginski.

This may seem like heresy, but isn't really:

__FILE__

06/12/2025 8/18

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/36772
https://github.com/rocky/ps-watcher
mailto:cezary.baginski@gmail.com
https://bugs.ruby-lang.org/issues/4824

#28 - 06/10/2011 11:23 PM - Cezary (Cezary Baginski)

On Fri, Jun 10, 2011 at 07:20:32AM +0900, Rocky Bernstein wrote:

Issue #4824 has been updated by Rocky Bernstein.

Cezary Baginski wrote:

This may seem like heresy, but isn't really:

__FILE__ == $0

 just a hack for letting a file be both a script and a "library"

at the same time? With the only sane use (I can think of) being

adding unit tests?

 I wrote my thoughts regarding this to ruby-core on June 5-6. See

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/36772.

 Yes, I read your comments (I read the list). It was what got me

thinking. I didn't like checking using file path strings either.

It has one answer to your question which, in sum, is "demo code".

Demonstration code is not the same as a unit test.

 Yes, but shouldn't that be in a README or example.rb instead?

But there is another use. One can write a program that has a

command-line interface, but folks can use this as a library instead.

For example see, https://github.com/rocky/ps-watcher

 Shouldn't there be an executable script installed in bin/ loading a

lib/ps-watcher/cli.rb file ? It would be accessible from $PATH.

And unit/integration tests can be simpler and more robust.

I understand the use case(s), but I don't see why '__FILE__ == $0' is

really that useful and good practice enough to be explicitly supported

by the language.

As for the name - anything containing 'main' assumes familiarity with

C-type languages, which may or may not be the case for novices.

--

Cezary Baginski

#29 - 06/10/2011 11:23 PM - Cezary (Cezary Baginski)

On Fri, Jun 10, 2011 at 09:35:24PM +0900, Austin Ziegler wrote:

On Thu, Jun 9, 2011 at 3:49 PM, Cezary Baginski

cezary.baginski@gmail.com wrote:

Issue #4824 has been updated by Cezary Baginski.

__FILE__ == $0

 just a hack for letting a file be both a script and a "library"

at the same time? With the only sane use (I can think of) being

adding unit tests?

 Tests are most certainly not the only good reason for this feature,

and I would regret its departure.

 By "sane" use I didn't mean "good" use. Especially with a team working

together and source control. I have nothing against the current use of

checking for main script, but I don't think promoting its use through

additional language support is beneficial.

06/12/2025 9/18

https://bugs.ruby-lang.org/issues/4824
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/36772
https://github.com/rocky/ps-watcher
mailto:cezary.baginski@gmail.com
https://bugs.ruby-lang.org/issues/4824

--

Cezary Baginski

#30 - 06/13/2011 10:29 PM - Cezary (Cezary Baginski)

On Sat, Jun 11, 2011 at 11:20:31AM +0900, Rocky Bernstein wrote:

On Fri, Jun 10, 2011 at 10:03 AM, Cezary cezary.baginski@gmail.com wrote:

On Fri, Jun 10, 2011 at 07:20:32AM +0900, Rocky Bernstein wrote:

It has one answer to your question which, in sum, is "demo code".

Demonstration code is not the same as a unit test.

 Yes, but shouldn't that be in a README or example.rb instead?

 I prefer demo code to be runable in the same way that tests are runable. And

for simple things, one file is better, feels more lightweight, and is less

clumsy (...)

 So why not instead check for specific script arguments, like '--demo',

'--test', '--help', etc.? If checking for '__FILE__ == $0' is really

the best solution in a given case, my question is: why provide a

special method for the same thing?

I think we can tolerate different styles, no?

 Absolutely! So why not just use the following in such programs:

def main?; __FILE__ == $0; end # for 'if main?'

class String; def main?; self == $0; end; end #for '__FILE__.main?'

 That way, anyone can use their own style for the idiom with little

coding overhead. And it will work with any Ruby version out there.

It would be accessible from $PATH.

And unit/integration tests can be simpler and more robust.

 If you looked at the project, you'll see that there are tests. I don't see

how unit/integration tests would be made simpler by putting the trivial

command-line interface, or main() routine, in another file.

 Regarding the ps-watcher project specifically, it requires other

project files anyway, so you cannot use the file standalone. So, in

that case, you can assume most of the code (demo?) can be moved to

other files, leaving only the "main" code, after which the '__FILE__'

check around it can be removed altogether.

There is no README file, so it is a little hard to figure out how to

use the application, without reading through everything. Replacing the

"main checking" with a new Ruby 1.9.3 method (that would do the same) is

something I find not worth the time to even discuss.

As for tests - there already is a Rakefile which runs them. Why not

add a 'demo' task there as well?

I'm not trying to criticize the project here - I just don't see it as

a convincing example showing how a new method for the idiom is

valuable.

Could it just be sufficient to accept that others find it useful

even if it is not useful to you?

 Sure, the idiom is useful, even if I have a hard time thinking of a

case where its use is elegant, the best practice and recommended -

enough to explain the absolute need for anything more that the way it

is done currently (with __FILE__ == $0).

06/12/2025 10/18

mailto:cezary.baginski@gmail.com

This is now feels like discussions in Perl when folks would ask if "until"

was really important enough when there was "if" and "not" And if the form

with "statement if expression" was really warranted since you had "if

expression ...".

 I get what you are trying to say, but the example isn't a good one

IMHO - keywords are much harder to emulate without language support,

because they affect syntax. Things like Ruby's "unless" are valuable

because of that. __FILE__.main? OTOH is an easy one-liner.

Let me try one: some people mix paint with screwdrivers, because they

have them handy (after opening the paint box). Why would we want to

add "paint mixer" features to every screwdriver to support this?

Having a special method for a special case is like having 7.is_five?

or "y".is_yes?. Extreme examples, I know, but why is #main? an

exception here?

If you feel strongly about such matters, I suppose you could write a new

programming language or perhaps carve out a subset of Ruby that does not

have such things that you don't feel are useful or are good practice.

 To me this argument is along the lines of: "If you don't like adding

very useful is_mp3? and is_html? methods to String, why don't you

design your own programming language?".

IMHO, the idiom is not generic enough to deserve its own method.

Actually, it reminds me of discussions about Rails's

HashWithIndifferentAccess. That class handles a specialized case which

is very hard to do otherwise. I understand why it isn't necessary to

support it in Ruby - and I think many will agree, but why in that case

do we need a specialized method to replace code that already does a

job just fine?

I would really like some clear guidelines for proposing and accepting

similar methods in the future.

I don't really care if a method is added or not, I am really

interested in: on what basis was it decided that it is worth

considering?

Ideally, a reason that would be more definite than just a matter of

taste or popularity. And without scrutiny, we may be missing possibly more

sensible options. For example:

require 'main'

Main.run do

 puts "Running a demo"

end

 That way we can even call the main manually, handle exit code,

override, etc. Just an idea though.

--

Cezary Baginski

#31 - 06/14/2011 08:23 PM - Cezary (Cezary Baginski)

On Tue, Jun 14, 2011 at 03:23:27PM +0900, Rocky Bernstein wrote:

On Mon, Jun 13, 2011 at 9:25 AM, Cezary cezary.baginski@gmail.com wrote:

So why not just use the following in such programs:

def main?; __FILE__ == $0; end # for 'if main?'

Simplicity and unreliability.

 My first reaction is usually: is it valuable? Simple != valuable.

06/12/2025 11/18

mailto:cezary.baginski@gmail.com

I think it is reliable enough for the cases mentioned. If reliability

is an important issue here, then the implementation is more important

than the name anyway. Unless the name is just a starting point for

considering the issue at all.

Why not start with a gem first? Like Object#me (which became #tap) or

#andand which IMHO is much more valuable but would greatly benefit from

parser support in Ruby.

If simplicity is the main criteria, we could end up with Ruby's

namespace exploding with "simplifying" methods that almost no one will

use for various reasons. Why not create a 'main' gem and work on

getting #andand (#._?) support in Ruby's parser instead?

#tap turned out awesome IMHO. I don't see #main? as revolutionary.

Everything you suggest, adds more code. I want less boilerplate code in

fewer files. That is what I meant by "lightweight".

 Modularity and more code-sharing friendliness is more important. The

ps-watcher project seems to reflect this - it contains more than one

file, tests separate, Rakefile, functionality split up into small *.rb

files, etc. If you like, I can spend some time to see what ps-watcher

would like without the 'main' check. Not as a criticism, just as a way

to support my point regarding design.

I think it would be great to first have a 'main' gem until the

implementation matures. And it could be used in older Ruby

applications immediately. Like #tap, #andand, etc.

Early on in the thread, Matz had said he was amenable to the idea of adding

a method. But he was unsure about the name. If he had indicated he wasn't

interested, I would have dropped the topic and never have posted a response

initially.

 Exactly! But I'm still not convinced about the value of such a method.

I know I'm dumb, but I don't think I'm dumb enough to not understand a

simple, valuable use case where a method is really an improvement

worth adding and backporting. Or why wasn't this ticket immediately

rejected.

Initially, I assumed I'm an idiot and believed the experts on this

list saw the value, which I couldn't. Being interested in improving my

skills, I got curious to learn what I am not seeing.

There is so much functionality that doesn't belong in Ruby core that

is way more valuable. How did this get anything else than "rejected"?

My only guess is unfortunate popularity of a use case that in itself

suggests bad design - which is why an alarm in my head went off.

In my first post which you said I read, I also discussed why the idiom is

unreliable.

 Yes, and I can imagine it being a problem fixable with a well thought

out implementation. It is good you brought it up.

I just don't see why improving the reliability of such a minor issue

(IMHO) is really productive and worth any other reaction than

rejecting or at least suggesting a new gem first.

Sorry for prolonging this discussion - I believe it may be worth

learning to deal with this issue (or even just people like me) and

preventing a whole class of similar cases (discussions?) in the

future.

If my issues are pointless - let me know and I'll put in more trust in

faith in the experts reading on ruby-core and give up on trying to

change the way I think.

Thanks!

--

06/12/2025 12/18

Cezary Baginski

#32 - 06/16/2011 06:29 AM - sandal (Gregory Brown)

On Sat, Jun 4, 2011 at 10:17 AM, Yukihiro Matsumoto matz@ruby-lang.org wrote:

Issue #4824 has been updated by Yukihiro Matsumoto.

I agree providing a method to tell whether it is loaded as a library or is executed as a command is more elegant than 'FILE

#33 - 06/19/2011 01:23 AM - headius (Charles Nutter)

On Wed, Jun 15, 2011 at 4:24 PM, Gregory Brown

gregory.t.brown@gmail.com wrote:

Lastly, I think __MAIN__ is reasonable if a method is not to be used,

though it feels a bit too magic for me.

 I'll repeat what others have repeated...more magic than __FILE__,

__LINE__, or even $0 itself?

Charlie

#34 - 06/23/2011 03:20 PM - lazaridis.com (Lazaridis Ilias)

The sentence "defines" essentially the terminology:

Yukihiro Matsumoto wrote:

I agree providing a method to tell whether it is loaded as a library or

^^^^^^^^^

"is loaded"

 loaded?

is executed as a command

^^^^^^^^^^^

"is executed"

 executed?

is more elegant than '__FILE__ == $0', but I am still afraid #executed? can mean multiple ways so that the name can cause confusion. We need

a better name.

 Thus the question to focus on is:

is "executed?" not clear enough?

If not, possibly just "loaded?" can be introduced.

main() unless loaded?

#35 - 03/25/2012 04:06 PM - mame (Yusuke Endoh)

- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

#36 - 06/08/2012 05:12 AM - fxn (Xavier Noria)

I vote for __MAIN__.

I think "main" will resonate to a lot of people with different backgrounds to indicate the entry point of the program, and choosing a keyword instead of

a method seems coherent with other keywords like __FILE__.

#37 - 11/20/2012 10:58 PM - mame (Yusuke Endoh)

- Target version set to 2.6

06/12/2025 13/18

mailto:matz@ruby-lang.org
https://bugs.ruby-lang.org/issues/4824
mailto:gregory.t.brown@gmail.com

#38 - 01/25/2015 10:18 PM - sawa (Tsuyoshi Sawada)

Close to Nobu's proposal FILE.main?, but I don't think it makes sense to introduce two new things FILE and main? that can only be used under this

combination. I propose defining a method on the existing File class. Something along:

File.main?

File.from_here?

 Edit: Seeing Nobu's comment 39, I realize it was my mistake. Sorry.

#39 - 01/25/2015 11:29 PM - nobu (Nobuyoshi Nakada)

- Description updated

My proposal was __FILE__.main?, not FILE.main?.

Just you're confused by markdown.

#40 - 01/26/2015 06:25 PM - headius (Charles Nutter)

The "main" toplevel object already gets special methods, so why not just define main.main? Avoid polluting Kernel or creating a special class for

__FILE__ just to support a "main" feature.

#41 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)

- Target version deleted (2.6)

#42 - 12/26/2017 07:22 AM - mame (Yusuke Endoh)

The names (or APIs) suggested so far:

executed?

required?

main?

first_script?

main_script?

run_script?

is_executed?

is_program?

defined?(__MAIN__)

__FILE__.main?

FILE.executed?

directly_executed?

standalone?

loaded?

__MAIN__

File.main?

File.from_here?

main.main?

#43 - 01/29/2018 05:30 AM - naofumi-fujii (naofumi fujii)

Hi, i created a patch for this ticket.

please take a look.

https://github.com/ruby/ruby/pull/1802

#44 - 03/04/2018 02:25 PM - shevegen (Robert A. Heiler)

It seems as if this may be decided at the upcoming ruby developer

meeting.

Matz voiced concern about the suggested name. Yusuke Endoh provided

a list of alternative names (or rather, a summary). I assume that the

name for the functionality here is the primary concern; the functionality

I assume is fine, so let's have a look at possible names.

I myself currently use this:

if __FILE__ == $PROGRAM_NAME

 The reason why I use the longer $PROGRAM_NAME is because it tells

me more than $0. $0 really does not tell me anything; the only

advantage $0 has is that it is short. But a method call would be

even shorter.

06/12/2025 14/18

https://github.com/ruby/ruby/pull/1802

The name "executed?" is not good, I think, because it implies

a state that has already been passed, in the past (that is

my interpretation, as a non-native english speaker).

I like the name run_script? - although it may not be a

100% fitting name (what is a "script" for example), it has a

meaning that tells me something. Perhaps run_file? may be

a better name, but I am not absolutely sure either. What I

like about this is that it is more explicit and conveys some

meaning to me when I look at code.

I don't like the name main.main? because of the repetition.

It seems superfluous to repeat it; and "main?" also tells me

nothing really.

I don't like __ MAIN __ much either because of the leading and

trailing __. I understand that ruby uses it already internally

and we use it via FILE == comparisons but I do not think

that __ MAIN __ is any improvement over FILE ==

Sorry for splitting the above, markdown appears to think that

__ means some bold emphasis.

defined?(MAIN) is bad because it requires too much typing

and is not a substantial improvement over FILE ==

I also do not like the calls to "File.method" such as

FILE.executed? - calls to Kernel are better, IMO.

Anyway, I don't want to inflate this too much so I will add some

names as suggestions - I will focus on something that may have a

meaning from the name alone, and assumingly resides on the

Kernel namespace; I'll also update on mame's list, at the

least those entries that I think make for better names:

(I think I prefer names that refer to "standalone" and "run"

or something along those lines.)

is_standalone?

run_standalone?

standalone?

is_executed?

is_main?

run_script?

run_file?

shall_run?

is_runnable?

 I prefer the first two variants:

is_standalone? or run_standalone?

They would convey that the file may be run "standalone",

that is, "on its own" - similar to the current check that

I (and others) do such as via:

if __FILE__ == $PROGRAM_NAME

end

 Anyway, if we ignore any specific name, perhaps if we can

not narrow it down to just one name, we (or the ruby core

team at a meeting) could pick three variants, and we could

use all three as experimental feature, before deciding on

the primary way and removing the others (or keeping them

as aliases; but I think, although I love aliases, it may

be better to use only one way here, for a method, so that

people all use the same in their code. I love aliases but

in this case, I think it is better to encourage only the

best name. When we have e. g. 3 possible names, I am sure

it will be much easier to select the best name altogether

after a while of ruby hackers using these names; and it

could be an experimental feature before the xmas release,

upon where it could be finalized and the best one decided.

Or matz just decides on a name, that may be the shortest

06/12/2025 15/18

and simplest perhaps. :D My primary hope here is that

the name is a good name which is used a lot - it would

not be good if people prefer "if FILE == $PROGRAM_NAME"

because they dislike the new name)

#45 - 03/04/2018 04:45 PM - dsferreira (Daniel Ferreira)

Why not:

Kernel#executable?

=> true if FILE == $0

 meaning: Is the file good to be executed?

#46 - 03/04/2018 10:39 PM - graywolf (Gray Wolf)

I'm not a native English speaker, so this whole comment might be completely off,

but at least to me the ending ~able? implies that it is possible to use it

that way, not necessarily that is was used that way.

So Kernel#executable? tells me that something is able to be executed, not that

it was in fact executed. is_standalone? imho suffers from the same thing (btw

why not just standalone?).

At least to me Kernel#executed? looks better.

But I like __MAIN__ or Kernel#main? the best. Anyone who ever saw C or Python

would be able to guess what it means even without checking documentation.

#47 - 03/04/2018 11:12 PM - dsferreira (Daniel Ferreira)

graywolf (Gray Wolf) wrote:

So Kernel#executable? tells me that something is able to be executed, not that

it was in fact executed.

 Correct, Kernel#executable? infers if the code is able to be executed.

Usually when we use

if __FILE__ == $0

 # call code to be run

 main(ARGV)

end

 We are saying that the code should only be executed if the condition applies.

The code will be executed once we call main(ARGV).

The code is able to be executed if __FILE__ == $0.

#48 - 03/04/2018 11:18 PM - graywolf (Gray Wolf)

dsferreira (Daniel Ferreira) wrote:

[..]

Usually when we use

if __FILE__ == $0

 # call code to be run

 main(ARGV)

end

 We are saying that the code should only be executed if the condition applies.

[..]

 Exactly, and the condition is: was this file directly executed?.

Or: is this the main? script

Or: is this the main_script?

I mean, I get what you mean, but still think it's a bit confusing.

06/12/2025 16/18

EDIT:

Given these two snippets in pseudo-code, which better shows the intent of the

if?

if this file is the main script

 do main stuff

end

 or

if the code below is able to be executed

 do main stuff

end

 Sure, both do the same thing but I think the first one shows the intent better.

#49 - 03/04/2018 11:26 PM - phluid61 (Matthew Kerwin)

For what it's worth, I think __main__ is best, or main? if we're moving away from underscores for source-level metacode.

"Executable" is such an overloaded term, and "executed" is weird (isn't all code executed?); the convention of a single "main" entry point has been

around for a long time now.

#50 - 03/04/2018 11:26 PM - dsferreira (Daniel Ferreira)

graywolf (Gray Wolf) wrote:

Exactly, and the condition is: was this file directly executed?.

 We have two different contexts:

File context (FILE#executed?) - Was the file executed?

Code context (Kernel#executable?) - Is the code executable?

I prefer to work at the code context level since we can then add other conditions to allow a code to be executable.

e.g.

def executable?

 __FILE__ == $0 && ARGV[1] == "foo"

end

#51 - 03/04/2018 11:33 PM - dsferreira (Daniel Ferreira)

phluid61 (Matthew Kerwin) wrote:

For what it's worth, I think main is best, or main?

 I would agree with main in the following way:

Kernel#main method to be overridden and only run if __FILE__ == $0

def main

 Foo.bar

end

#52 - 03/04/2018 11:40 PM - phluid61 (Matthew Kerwin)

dsferreira (Daniel Ferreira) wrote:

phluid61 (Matthew Kerwin) wrote:

For what it's worth, I think main is best, or main?

 I would agree with main in the following way:

 __main__, not main. Returns a boolean value, which can be used as a predicate:

if __main__

 foo

end

06/12/2025 17/18

#53 - 03/05/2018 04:57 AM - sawa (Tsuyoshi Sawada)

From the code __FILE__ == $0, we can tell that what matters is that this condition is within the main file that is executed. If we are to write something

like if __main__ or if main?, I have a concern that it will become less clear that that condition has to be placed within the main file. Some (careless)

users might take it, for example, that such condition becomes false when it is a part of a gem, and becomes true when it is not part of the gem,

irrespective of which file that condition is placed.

In order to avoid such problems, I think a method name like main_file? would be better. Also, in order to give flexibility so that the condition can be

placed in files other than the main file, it might be good to allow an optional argument as in main_file?(file_name), where file_name defaults to

__FILE__.

Powered by TCPDF (www.tcpdf.org)

06/12/2025 18/18

http://www.tcpdf.org

