
Ruby - Feature #6298

Proc#+

04/15/2012 05:31 PM - trans (Thomas Sawyer)

Status: Rejected   

Priority: Normal   

Assignee:    

Target version:    

Description

=begin

Maybe there is another way to do this, and if so please enlighten me.

I have a case where collection of blocks need to be handled as if a single block, e.g.

class BlockCollection

def initialize(*procs)

@procs = procs

end

def to_proc

procs = @procs

Proc.new{ |*a| procs.each{ |p| p.call(*a) } }

end

end

The issue with this is with #to_proc. It's not going to do the right thing if a BlockCollection instance is passed to #instance_eval b/c it

would not actually be evaluating each internal block via #instance_eval.

But if we change it to:

def to_proc

  Proc.new{ |*a| procs.each{ |p| instance_exec(*a, &p) } }

end

 It would do the right thing with #instance_eval, but it would no longer do the right thing for #call, b/c would it evaluate in the context of

BlockCollection instance instead of where the blocks weer defined.

So, unless there is some way to do this that I do not see, to handle this Ruby would have to provide some means for it. To this end

Proc#+ is a possible candidate which could truly combine two procs into one.

=end

Related issues:

Related to Ruby - Feature #5007: Proc#call_under: Unifying instance_eval and ... Assigned

History

#1 - 04/16/2012 12:37 PM - mame (Yusuke Endoh)

- Status changed from Open to Rejected

Hello,

I think you have valid concern.  AFAIK, there is no way to do this.

But #5007 (Proc#call_under) is apparently a more general solution

for this issue.

You will be able to write BlockCollection with Proc#call_under:

def to_proc

Proc.new{ |*a| procs.each{ |p| p.call_under(self, *a) } }

end

So, let's discuss the feature in that thread.

--

Yusuke Endoh mame@tsg.ne.jp

Powered by TCPDF (www.tcpdf.org)

06/12/2025 1/1

https://bugs.ruby-lang.org/issues/5007
mailto:mame@tsg.ne.jp
http://www.tcpdf.org

