
Ruby - Feature #6409

public_send is easily bypassed

05/08/2012 09:37 AM - postmodern (Hal Brodigan)

Status: Rejected

Priority: Normal

Assignee:

Target version: 2.0.0

Description

=begin

(({public_send})) can easily be bypassed, by using it to call (({send})). (({public_send})) should explicitly not allow calling (({send})).

class Test

 private

 def secret

 "top secret"

 end

end

t = Test.new

t.public_send(:secret)

=> NoMethodError: private method `secret' called for #<Test:0x0000000159b950>

t.public_send(:send, :secret)

=> "top secret"

t.public_send(:send, :exec, "rm -rf ~")

 =end

History

#1 - 05/08/2012 12:41 PM - marcandre (Marc-Andre Lafortune)

- Tracker changed from Bug to Feature

This is definitely not a bug, as send is public.

I don't understand the rationale behind your request. You are still using send. public_send does not and cannot guarantee that a private method won't

be called at some point; only that it won't send the message in case it's a not a public method.

#2 - 05/08/2012 02:18 PM - postmodern (Hal Brodigan)

(({public_send})) should only allow calling public methods. By extension, it should not allow calling (({send})), since that would negate the purpose of

(({public_send})). In the context of (({public_send})), the (({send})) method has special meaning.

#3 - 05/08/2012 02:34 PM - jeremyevans0 (Jeremy Evans)

I see no reason to special case this. send is a public method, therefore public_send should be allowed to call it. Attempting to deny access to send

for safety reasons is pointless considering that instance_eval is public can be used to work around the issue in the same way:

t.public_send(:instance_eval, 'secret')

t.public_send(:instance_eval, 'exec("rm -rf ~")')

public_send doesn't imply safety, at all, and it was not designed for such a purpose.

#4 - 05/08/2012 04:39 PM - matz (Yukihiro Matsumoto)

- Status changed from Open to Rejected

The whole purpose of public_send is to prohibit the invocation of non-public methods, probably to help detecting error earlier. In that sense, as

Jeremy expressed, we see no reason to prohibit #send the public method. public_send (and method visibility in general) is not the way to ensure

anything, e.g. security.

06/13/2025 1/2

Matz.

#5 - 05/08/2012 07:02 PM - alexeymuranov (Alexey Muranov)

@postmodern, send is a public method, why would public_send refuse to call it? Were you suggesting to remove the send method?

#6 - 05/08/2012 07:48 PM - MartinBosslet (Martin Bosslet)

Wouldn't something as proposed in http://bugs.ruby-lang.org/issues/5455 help in the long run?

#7 - 05/08/2012 08:02 PM - postmodern (Hal Brodigan)

Now I know public_send should not be trusted with arbitrary method names/arguments. Is there even a safe version of send?

#8 - 05/08/2012 08:29 PM - alexeymuranov (Alexey Muranov)

=begin

Maybe something like:

class SafeClass

METHOD_SAFE = { :safe_method_1 => true, :safe_method_2 => true }

def safe_send(method, *arguments)

 send(method, *arguments) if METHOD_SAFE[method]

end

 end

But this is not completely safe either, because anybody can reopen this class later and change the (({METHOD_SAFE})) constant or even the

(({safe_send})) method.

=end

Powered by TCPDF (www.tcpdf.org)

06/13/2025 2/2

http://bugs.ruby-lang.org/issues/5455
http://www.tcpdf.org

