
Ruby - Feature #6672

Calling #() without dot before braces

06/30/2012 07:13 AM - prijutme4ty (Ilya Vorontsov)

Status: Rejected   

Priority: Normal   

Assignee:    

Target version:    

Description

=begin

It looks odd to call Proc/Method (({pr})) using (({pr.(*args)})) or (({pr[*args]})) syntax. Why not to use (({pr(*args)})) syntax? In such a

case methods(procs) would become nearer to first-class object and calls are more standardized such that there's much less

difference between method call and call of (({#call})) method

So I suggest syntax (({x.(*args,&block)})) alias to (({x(*args,&block)}))

It will make it possible to transparently redefine any method in a scope like this:

class String

def my_meth(direction)

index = method :rindex  if direction == 'RtoL'

... lots of code that uses #index method

end

def my_second_meth

  upcase = method :downcase  # we decided to try what if we change all upcases to downcases in thi

s method and added such a line

 

lots of code using upcase() method

  upcase()  # it's sad that it's impossible not to use brackets at all, but this'd be ambiguous

end

 end

Also I wrote about syntax like (({:meth.(*args)})) which creates a proxy-object having to_proc method - so that it's possible to write

(({[1,2,3].map &:to_s.(2)}))  --  now no dot in such syntax

Also it'd be possible to implement some object with syntax like (({obj(args1)(args2)})) - obj has method (({#call})) that returns object

that also has method (({#call})) and they are both called.

It can be in such a way: (({method(:index)('z')}))

One problem is that it can behave differently from current behavior in case that method have the same name as a local-variable. Now

it works in such a way:

p='var';

print p #=> 'var'  ## works as local variable

p('hi') #=> 'hi'   ## works as method call

I don't know if it's a spec, I suppose that one mustn't use both variable and method at the same place. So even it's a spec it can be

revised in future versions of ruby so that new behaviour would be like that:

p='var';

print p #=> 'var'  ## works as local variable

p('hi') #=> undefined method call for 'var':String

=end

Related issues:

Is duplicate of Ruby - Feature #7346: object(...) as syntax sugar for object.... Rejected 11/13/2012

History

#1 - 06/30/2012 08:04 AM - nobu (Nobuyoshi Nakada)

06/14/2025 1/2



- Description updated

FYI, this is a feature which had been implemented once and reverted in the past.

I don't know if it's a spec, I suppose that one mustn't use both variable and method at the same place. So even it's a spec it can be revised in

future versions of ruby so that new behaviour would be like that:

 Yes, it's a spec, and there was so many code depending this, more than expected before the try.

#2 - 06/30/2012 09:10 AM - prijutme4ty (Ilya Vorontsov)

nobu (Nobuyoshi Nakada) wrote:

FYI, this is a feature which had been implemented once and reverted in the past.

I don't know if it's a spec, I suppose that one mustn't use both variable and method at the same place. So even it's a spec it can be revised

in future versions of ruby so that new behaviour would be like that:

 Yes, it's a spec, and there was so many code depending this, more than expected before the try.

 Sadly. It looks that code basing on such a spec isn't written in a good manner =\

#3 - 11/18/2012 12:37 PM - Anonymous

In that case this issue should be closed. (I also think this feature is too much sugar.)

#4 - 11/19/2012 12:26 AM - matz (Yukihiro Matsumoto)

- Status changed from Open to Rejected

Powered by TCPDF (www.tcpdf.org)

06/14/2025 2/2

http://www.tcpdf.org

