Ruby - Feature #6684

Object#do
07/02/2012 11:07 AM - merborne (kyo endo)

Status: Rejected
Priority: Normal
Assignee:

Target version:

Description

=begin
#Object#do
This is my first post.

000000000DoOoooooono
Let me propose a new method Object#do.

000000000bject#dol0OOOD0

class Object
def do(*args, &blk)
yield(self, *args)
end
end

do encapsulate a sequencial procedure into a block. It makes some temporal variables to be block local and enhance code
readability. | might say that do is an Object#tap with block result, or is Array#map for one item.

Ic]JEIEI%IIJJEIDII]][IDII]][II][IObject#tapI]I]I]I]Array#map[ll]

##Usage

calculate average and standard deviation for list
#

without “do°

scores = [56, 87, 49, 75, 90, 63, 65]

scores.inject (:+) / scores.size # => 69

avg = scores.inject (:+) / scores.size
sigmas = scores.map { |n| (avg — n)**2 }
sd = Math.sqgrt (sigmas.inject (:+) / scores.size) # => 14.247806848775006

with “do°
avg = [56, 87, 49, 75, 90, 63, 65].do { |s| s.inject(:+) / s.size } # => 69

sd = scores.do { |s|
avg = s.inject(:+) / s.size
sigmas = s.map { In| (avg - n)**2 }

Math.sqgrt (sigmas.inject (:+) / s.size)
}
sd # => 14.247806848775006

create a hash from a set of lists

#

#

without ‘do°

h = Hash[[:a, :b, :cl.zip([1l, 2, 3]1) 1 # => {:a=>1, :b=>2, :c=>3}

S

with “do°
h = [:a, :b, :cl.zip([1,2,3]).do { |arr| Hashlarr] } # => {:a=>1, :b=>2, :c=>3}

sum of array using recursion

06/17/2025 1/3

#
without ‘do°
def sum(lst, mem=0)
return mem if lst.empty?
sum(lst.drop(l), mem+lst.first)
end

sum [*1..5], 5 # => 20
or

def sum(lst, mem=0)
return mem if lst.empty?
fst, *tail = 1lst
sum(tail, mem+fst)

end

with “do°
def sum(lst, mem=0)

return mem if lst.empty?

lst.do { |fst, *tail| sum(tail, mem+fst) }
end

sum2 [*1..5], 5 # => 20
BasicObject#instance_eval works for the above, but it not appropriate for them.

000000Basicobject#instance_evalll0000000000000000000D0000DO00D

Thank you for your consideration.
=end

Related issues:

Related to Ruby - Feature #6721: Object#yield_self Closed
Has duplicate Ruby - Feature #12760: Optional block argument for “itself’ Closed
History

#1 - 07/04/2012 04:17 PM - nobu (Nobuyoshi Nakada)

something.do do end seems messy a little.

something.do do end00000000...0

#2 - 07/04/2012 04:32 PM - knu (Akinori MUSHA)

I'm afraid do might be a bit too bold choice for a Kernel method. (DBI has a do method for example)
You can use tap for now, like result = object.tap { |o| break f(o) }.

Speaking of which, I've always felt that it would be nice if object.{ ... } was a shorthand for object.instance_eval { ... }, but | can't think of a do-end
counterpart for that.

#3 - 07/04/2012 09:33 PM - merborne (kyo endo)

nobu (Nobuyoshi Nakada) wrote:

something.do do end seems messy a little.

Yes. something.do do end is messy. I'm happy if something.do end works.. | agree the name is not good.

#4 - 07/04/2012 09:43 PM - merborne (kyo endo)
knu (Akinori MUSHA) wrote:

You can use tap for now, like result = object.tap { |o| break f(0) }.

great alternative!
I'm satisfied with this. Thank you.

06/17/2025 2/3

#5 - 07/08/2012 09:47 AM - sorah (Sorah Fukumori)
- Status changed from Open to Rejected

No problem to reject?

#6 - 07/08/2012 05:16 PM - merborne (kyo endo)

sorah (Shota Fukumori) wrote:
No problem to reject?
no problem. thank you.

#7 - 11/20/2015 06:04 PM - nobu (Nobuyoshi Nakada)
- Related to Feature #6721: Object#yield_self added

#8 - 09/20/2016 12:55 AM - nobu (Nobuyoshi Nakada)
- Has duplicate Feature #12760: Optional block argument for “itself’ added

06/17/2025 3/3

http://www.tcpdf.org

