
Ruby - Feature #6783

Infinite loop in inspect, not overriding inspect, to_s, and no known circular references. Stepping into

inspect in debugger locks it up with 100% CPU.

07/23/2012 11:22 PM - garysweaver (Gary Weaver)

Status: Open

Priority: Normal

Assignee:

Target version:

Description

In Ruby 1.9.3p194 in Rails 3.2.6 in rails console, in my script I'm calling inspect on a Ruby object and even though I'm not overriding

inspect, to_s, and there are no known circular references, inspect is going into an infinite loop locking Ruby up with 100% CPU

usage.

At first, I would think this problem is probably outside of Ruby and either in my code or in a gem that I'm using, however the problem

is that using the Debugger gem, if I set a breakpoint above the issue and use "s" (by itself) to step into the line where it calls inspect,

it locks up there, so I can't debug the issue. When I do that I hit ctrl-c, I'm in .../.rvm/rubies/ruby-1.9.3-p194/lib/ruby/1.9.1/irb.rb:

 64 trap("SIGINT") do

=> 65 irb.signal_handle

 66 end

 and breaking out of that, or if I don't step into it and I break out of it, I see:

path_to_script/script_name.rb:739:in `call'

path_to_script/script_name.rb:739:in `inspect'

path_to_script/script_name.rb:739:in `inspect'

...

 (~100 times)

 path_to_script/script_name.rb:739:in `block (2 levels) in my_method_name'

 In a situation like this, how can I debug the issue? Is there anything in the inspect method that could causing this behavior?

I think the most likely culprit is some bad code on my part in the script, but unfortunately I can't debug it when the debugger can't step

into inspect.

Thanks for any help you can provide.

Related issues:

Related to Ruby - Feature #6733: New inspect framework Open

Related to Ruby - Feature #18285: NoMethodError#message uses a lot of CPU/is ... Closed

Is duplicate of Ruby - Bug #6291: Backtrace printout halts for an extremely l... Closed 04/14/2012

History

#1 - 07/23/2012 11:29 PM - garysweaver (Gary Weaver)

Note: unfortunately this is an internal script that depends on a local DB so can't share, but can duplicate the problem each time, and was able to

duplicate in ruby-1.9.3-p125 also. I don't have ruby-head setup yet, but working on it.

#2 - 07/24/2012 04:27 AM - garysweaver (Gary Weaver)

Figured it out. The problem was that the inspect was just generating a lot of data.

It really wasn't taking 100% CPU. The process in Activity Monitor in OS X appeared as though it was taking 100%, but I could also see in Activity

Monitor that only 12-15% CPU was actually being used.

Setting the breakpoint/stepping into inspect is of little use, but that is because inspect is C rather than Ruby code, so that can't be stepped into with

the Ruby debugger gem.

Here is an example of something with somewhat similar behavior to what I was describing. As you can see, the issue was that the structure was just

getting larger and larger, but not because of circular references:

class Thing

 attr_accessor :a_hash

06/17/2025 1/3

 attr_accessor :an_array

 attr_accessor :another_array

end

class Reporter

 def report(num)

 t1 = Time.now

 first_ref = Thing.new

 this_ref = first_ref

 num.times do

 next_ref = Thing.new

 this_ref.a_hash = {"a#{rand(9999999)}".to_sym => next_ref}

 this_ref.an_array = [next_ref]

 this_ref.another_array = [next_ref]

 this_ref = next_ref

 end

 this_ref.a_hash = {"a#{rand(9999999)}".to_sym => first_ref}

 this_ref.an_array = [first_ref]

 this_ref.another_array = [first_ref]

 #breakpoint

 puts first_ref.inspect

 puts "#{num} times took #{Time.now - t1}ms"

 end

end

r = Reporter.new

20.times {|i| r.report(i)}

 But if you add more and more to a linked object chain where the last item in the chain self-references the first, you can see that self-reference and the

depth of self-reference are not problems here:

class Thing

 attr_accessor :ref

end

class Reporter

 def report(num)

 t1 = Time.now

 first_ref = Thing.new

 this_ref = first_ref

 num.times do

 next_ref = Thing.new

 this_ref.ref = next_ref

 this_ref = next_ref

 end

 this_ref.ref = first_ref

 #breakpoint

 puts first_ref.inspect

 puts "#{num} times took #{Time.now - t1}ms"

 end

end

r = Reporter.new

1000.times {|i| r.report(i)}

 Please close this ticket, and sorry about that. Wanted to explain what happened in case it helps anyone else.

#3 - 11/03/2012 12:06 PM - mame (Yusuke Endoh)

- Status changed from Open to Closed

#4 - 08/17/2016 01:15 PM - stefan.kroes (Stefan Kroes)

I would like to reopen discussion on this subject. I think the default implementation of #inspect tends to hang/explode for complex/large object graphs

with lots of cycles. In 10 years of programming Ruby I ran into this twice and had to waste several hours before finding the problem twice (today and

several years ago if I remember correctly). Inspect is often used for generating error messages which will hang in turn, misdirecting debugging efforts

to the original error.

To clarify: I don't really think this is a bug, just an aspect of Ruby that may cause grief (especially to new users) and can be improved.

A simple script to reproduce:

class Base

06/17/2025 2/3

 attr_accessor :foos, :bars, :bazs

end

class Foo < Base; end

class Bar < Base; end

class Baz < Base; end

foos = Array.new(100) { Foo.new }

bars = Array.new(100) { Bar.new }

bazs = Array.new(100) { Baz.new }

[*foos, *bars, *bazs].each do |base|

 base.foos = foos

 base.bars = bars

 base.bazs = bazs

end

puts foos.inspect.size

{14:54}[2.3.1]~ ➭ time ruby test.rb

127165300

ruby test.rb 7.77s user 0.29s system 97% cpu 8.237 total

 This example seems somewhat contrived and 7 seconds doesn't seem long but I just had a real-life object graph of a large state machine hang my

process for at least 20 minutes (broke it off).

I know the documentation for Object#inspect says User defined classes should override this method to make better representation of obj. but I don't

think many people do this, especially as the default implementation is very useful.

Possible solutions include:

Further limiting recursion of default inspect

Limiting number of elements shown in inspect for Hash, Array, etc.

Putting a timeout on the default inspect, informing the user he/she should override inspect with something sensible for a certain class

Timeout should be nested so it triggers for the deepest inspect that takes too long

#5 - 09/26/2016 11:07 AM - shyouhei (Shyouhei Urabe)

- Status changed from Closed to Open

reopen as per request (seems like it is no longer a bug ticket but a feature request?)

#6 - 09/26/2016 03:02 PM - headius (Charles Nutter)

See also #9725, my issue/request relating to NameError's behavior of carrying the target object and causing huge inspect-driven memory bloat when

attempting to print the message.

#7 - 10/11/2016 07:41 AM - shyouhei (Shyouhei Urabe)

- Related to Feature #6733: New inspect framework added

#8 - 10/11/2016 07:43 AM - shyouhei (Shyouhei Urabe)

- Is duplicate of Bug #6291: Backtrace printout halts for an extremely long time when large amounts of data are allocated added

#9 - 10/11/2016 10:58 AM - shyouhei (Shyouhei Urabe)

We looked at this ticket at developer meeting today and found several former tickets that was linked then. FYI #6733 is the most big-pictured feature

request that ultimately solves this problem. Not yet implemented though.

#10 - 08/05/2019 11:13 PM - jeremyevans0 (Jeremy Evans)

- Tracker changed from Bug to Feature

- ruby -v deleted (ruby 1.9.3p194 (2012-04-20 revision 35410) [x86_64-darwin11.4.0])

- Backport deleted (2.1: UNKNOWN, 2.2: UNKNOWN, 2.3: UNKNOWN)

#11 - 11/19/2021 08:00 PM - Eregon (Benoit Daloze)

- Related to Feature #18285: NoMethodError#message uses a lot of CPU/is really expensive to call added

Powered by TCPDF (www.tcpdf.org)

06/17/2025 3/3

https://bugs.ruby-lang.org/issues/9725
https://bugs.ruby-lang.org/issues/6733
http://www.tcpdf.org

