
Ruby - Feature #7376

Proposal for new syntax construct to define errors

11/17/2012 09:05 AM - kenn (Kenn Ejima)

Status: Rejected   

Priority: Normal   

Assignee:    

Target version:    

Description

=begin

As discussed here - https://gist.github.com/4091803

When we define an error class in a module, we do one of the following two ways.

module App

class Error < StandardError; end

class ServerError < Error; end

class ClientError < Error; end

end

module App

Error = Class.new(StandardError)

ServerError = Class.new(Error)

ClientError = Class.new(Error)

end

IMO, the ugliness of the syntax is partly responsible that not many libraries have custom errors of their own, even when it makes

sense.

It would be great if we could write this way instead:

module App

define_error Error                            # inherits StandardError by default

define_error ServerError, ClientError < Error # inherits App::Error

end

Which would encourage define errors.

I realized that the same could apply to empty class inheritance in general, but errors are much more likely to inherit without adding

any features - thus naming specifically (({define_error})) here.

Or, as Matz suggested in the comment:

module App

define_error :Error

define_error :ServerError, :ClientError, super: Error

end

this one looks good too.

=end

History

#1 - 11/17/2012 07:23 PM - matz (Yukihiro Matsumoto)

- Status changed from Open to Rejected

Put the following code to your program:

class Module

def define_error(*errors, superclass: StandardError)

errors.each do |e|

self.const_set(e, Class.new(superclass))

end

06/11/2025 1/2

https://gist.github.com/4091803


end

end

def define_error(*errors, **k)

Object.define_error(*errors, **k)

end

Matz.

Powered by TCPDF (www.tcpdf.org)

06/11/2025 2/2

http://www.tcpdf.org

