
Ruby - Feature #8229

extend Hash.include?

04/07/2013 08:14 AM - eike.rb (Eike Dierks)

Status: Assigned

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

Description

I'd like to suggest to extend the Hash.include? method.

Currently Hash.include? can only be used to ask for a key,

I believe it should be extended to ask for a (key value) pair.

I believe this extension can be done without breaking prior api.

I suggest to extend the signature of Hash.include?

to Hash.include?(key, value)

That message should return true,

if the receiving object does have an object at key which is equal to value.

It would be a simple replacement for:

h.include?(key) && h[key] == value

But I do not want to stop there.

I'm heading for h.include_all?(other_hash)

and h.include_any?(other_hash)

and it would be valuable to have h.intersect(other_hash) etc

I believe these to be useful primitives when working with hashes.

I'd like to have the api of the Set class available for the Hash class as well,

but there working on key/value matching.

Obviously any change to such the substantial class as the Hash class

needs a lot of thought for compatibility.

But I believe this can be done without breaking any prior code,

and it could add a lot of new out of the box functionality.

This probably needs some more thought.

We might come up with some dsl like thing like

h.includes.any? or h.includes.all? or h.includes.none?

to be used cross all collection classes.

Someone must be in charge for the Hash class,

my 2p

History

#1 - 04/09/2013 04:08 PM - naruse (Yui NARUSE)

- Description updated

- Category changed from misc to core

- Assignee changed from nobu (Nobuyoshi Nakada) to matz (Yukihiro Matsumoto)

#2 - 04/09/2013 04:37 PM - nobu (Nobuyoshi Nakada)

- File 0001-hash.c-Hash-include-improve.patch added

One ticket, one feature, please.

06/14/2025 1/2

#3 - 04/10/2013 01:17 AM - marcandre (Marc-Andre Lafortune)

Could you elaborate on why this is needed and in which cases one would need this?

Moreover, I would not write h.include?(key) && h[key] == value. In most cases h[key] == value is sufficient (unless value can be nil or there's a default

proc). Otherwise one can write h.fetch(key, DIFFERENT) == value, where DIFFERENT is an value different from all possible values of the hash, like

Object.new).

#4 - 04/12/2013 05:02 AM - headius (Charles Nutter)

As a feature that affects all Ruby implementations, this should probably move to CommonRuby: https://bugs.ruby-lang.org/projects/common-ruby

#5 - 07/04/2013 01:10 AM - fuadksd (Fuad Saud)

I think this would be more interesting if in the form:

h = { a: 'b', c: { d: 'e' } }

h.include?({c: { d: 'e' } }) # => true

It would accept a hash and check whether h includes that hash.

#6 - 12/10/2020 08:53 AM - naruse (Yui NARUSE)

- Target version deleted (3.0)

#7 - 04/03/2024 03:50 AM - hsbt (Hiroshi SHIBATA)

- Status changed from Open to Assigned

Files

0001-hash.c-Hash-include-improve.patch 5.37 KB 04/09/2013 nobu (Nobuyoshi Nakada)

Powered by TCPDF (www.tcpdf.org)

06/14/2025 2/2

https://bugs.ruby-lang.org/projects/common-ruby
http://www.tcpdf.org

