
Ruby - Feature #8796

Use GMP to accelerate Bignum operations

08/17/2013 04:10 AM - akr (Akira Tanaka)

Status: Closed

Priority: Normal

Assignee: akr (Akira Tanaka)

Target version: 2.1.0

Description

How about using GMP to accelerate Bignum operations?

GMP: The GNU Multiple Precision Arithmetic Library

http://gmplib.org/

I wrote a simple patch to use GMP to accelerate Bignum multiplication.

If a user don't want to use GMP, a configure option, --without-gmp,

disables this feature.

Since GMP is licensed as LGPL, some people would need it.

However I think most people can accept LGPL as Ruby 1.8's regex engine.

So, my patch uses GMP by default, if it is available.

It converts bignums from RBignum to mpz_t and back for each

large Bignum multiplication.

RBignum structure itself is not changed and ABI compatible.

(So, this is different from ko1's idea mentioned in Feature #6083)

The conversion cost is O(n).

It is negligible for operations slower than O(n) with large inputs.

Multiplication is a kind of such operation.

I measured the performance as follows.

% ./ruby -I.ext/x86_64-linux -r-test-/bignum -e '

methods = %i[big_mul_normal big_mul_karatsuba big_mul_toom3 big_mul_gmp]

m = 1000

n1 = 3**60

100.times {

n1 = n1 * (n1 >> (n1.size8/1514))

n2 = n1 + 1

bits = n1.size*8

methods.dup.each {|meth|

t1 = Process.clock_gettime(Process::CLOCK_THREAD_CPUTIME_ID, :nanoseconds)

n1.send(meth, n2) rescue next

(m-1).times { n1.send(meth, n2) }

t2 = Process.clock_gettime(Process::CLOCK_THREAD_CPUTIME_ID, :nanoseconds)

t = (t2 - t1)*1e-9 / m

puts "#{bits},#{t},#{meth.to_s.sub(/big_mul_/, "")}"

methods.delete meth if 1.0/m < t

}

STDOUT.flush

}

'

It seems GMP is faster when multiplication arguments are longer than 1000 bits

on my environment.

See bignum-mul-gmp.png for details.

I guess other operations, division and radix conversion, can also be faster using GMP.

Any comments?

06/17/2025 1/3

http://gmplib.org/
https://bugs.ruby-lang.org/issues/6083

History

#1 - 08/17/2013 04:53 AM - normalperson (Eric Wong)

"akr (Akira Tanaka)" akr@fsij.org wrote:

If a user don't want to use GMP, a configure option, --without-gmp,

disables this feature.

Since GMP is licensed as LGPL, some people would need it.

However I think most people can accept LGPL as Ruby 1.8's regex engine.

So, my patch uses GMP by default, if it is available.

 I'm happy with LGPL :)

It converts bignums from RBignum to mpz_t and back for each

large Bignum multiplication.

RBignum structure itself is not changed and ABI compatible.

(So, this is different from ko1's idea mentioned in Feature #6083)

The conversion cost is O(n).

It is negligible for operations slower than O(n) with large inputs.

Multiplication is a kind of such operation.

 Is there more performance improvement without the conversion?

How about push the conversion cost to legacy C API users to make

Bignum faster for pure-Ruby use in a future patch?

I'm mainly curious about "smaller" Bignums for users on 32-bit systems,

but I suspect much of that cost is object allocation.

#2 - 08/17/2013 09:53 AM - akr (Akira Tanaka)

2013/8/17 Eric Wong normalperson@yhbt.net:

Is there more performance improvement without the conversion?

How about push the conversion cost to legacy C API users to make

Bignum faster for pure-Ruby use in a future patch?

 It is same as ko1's idea.

I don't against it.

Feel free to implement and propose it.

However it has several difficulties.

It is a big task.

It need to implement all methods, not just slow methods.

ABI incompatibility.

ko1 tackles this in Feature #6083.

LGPL

It is no problem for me but I guess some people don't accept it.

So we need to maintain non-GMP implementation anyway.

Maintaining two implementations is troublesome.

We cannot access internal of mpz_t.

We may be limited to add new feature with optimal performance.

(mpz_getlimbn and mpz_size may be enough?)

It cannot embed small bignums.

So it needs more memory allocation.

(mpz_array_init may solve this problem?)

--

Tanaka Akira

#3 - 08/31/2013 03:57 PM - matz (Yukihiro Matsumoto)

- Assignee set to akr (Akira Tanaka)

06/17/2025 2/3

mailto:akr@fsij.org
https://bugs.ruby-lang.org/issues/6083
mailto:normalperson@yhbt.net
https://bugs.ruby-lang.org/issues/6083

This is internal. So go ahead and experiment.

Matz.

#4 - 09/26/2013 10:38 AM - naruse (Yui NARUSE)

- Status changed from Open to Closed

- Target version set to 2.1.0

Introduced on r42743.

Files

bignum-mul-gmp.patch 5.04 KB 08/17/2013 akr (Akira Tanaka)

bignum-mul-gmp.png 22.6 KB 08/17/2013 akr (Akira Tanaka)

Powered by TCPDF (www.tcpdf.org)

06/17/2025 3/3

http://www.tcpdf.org

