% Generated by roxygen2: do not edit by hand % Please edit documentation in R/classes.R \docType{class} \name{ClassifyResult} \alias{ClassifyResult} \alias{ClassifyResult-class} \alias{ClassifyResult,DataFrame,character,characterOrDataFrame-method} \alias{show,ClassifyResult-method} \alias{sampleNames} \alias{sampleNames,ClassifyResult-method} \alias{predictions} \alias{predictions,ClassifyResult-method} \alias{actualOutcome} \alias{actualOutcome,ClassifyResult-method} \alias{features} \alias{features,ClassifyResult-method} \alias{models} \alias{models,ClassifyResult-method} \alias{finalModel} \alias{finalModel,ClassifyResult-method} \alias{performance} \alias{performance,ClassifyResult-method} \alias{tunedParameters} \alias{tunedParameters,ClassifyResult-method} \alias{totalPredictions} \alias{totalPredictions,ClassifyResult-method} \alias{ClassifyResult,DataFrame,character-method} \alias{allFeatureNames} \alias{allFeatureNames,ClassifyResult-method} \alias{chosenFeatureNames} \alias{chosenFeatureNames,ClassifyResult-method} \title{Container for Storing Classification Results} \description{ Contains a list of models, table of actual sample classes and predicted classes, the identifiers of features selected for each fold of each permutation or each hold-out classification, and performance metrics such as error rates. This class is not intended to be created by the user. It is created by \code{\link{crossValidate}}, \code{\link{runTests}} or \code{\link{runTest}}. } \section{Constructor}{ \code{ClassifyResult(characteristics, originalNames, originalFeatures, rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams = NULL, finalModel = NULL)} \describe{ \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the characteristics of classification done. First column must be named \code{"charateristic"} and second column must be named \code{"value"}. If using wrapper functions for feature selection and classifiers in this package, the function names will automatically be generated and therefore it is not necessary to specify them.} \item{\code{originalNames}}{All sample names.} \item{\code{originalFeatures}}{All feature names. Character vector or \code{\link{DataFrame}} with one row for each feature if the data set has multiple kinds of measurements on the same set of samples.} \item{\code{chosenFeatures}}{Features selected at each fold. Character vector or a data frame if data set has multiple kinds of measurements on the same set of samples.} \item{\code{models}}{All of the models fitted to the training data.} \item{\code{tunedParameters}}{Names of tuning parameters and the value chosen of each parameter.} \item{\code{predictions}}{A data frame containing sample IDs, predicted class or risk and information about the cross-validation iteration in which the prediction was made.} \item{\code{actualOutcome}}{The known class or survival data of each sample.} \item{\code{importance}}{The changes in model performance for each selected variable when it is excluded.} \item{\code{modellingParams}}{Stores the object used for defining the model building to enable future reuse.} \item{\code{finalModel}}{A model built using all of the samples for future use. For any tuning parameters, the most popular value of the parameter in cross-validation is used. May be missing if some cross-validated fittings failed. Could be of any class, depending on the R package used to fit the model.} } } \section{Summary}{ \describe{ \item{\code{result} is a \code{ClassifyResult} object.}{ \code{show(result)}: Prints a short summary of what \code{result} contains. }} } \section{Accessors}{ \code{result} is a \code{ClassifyResult} object. \describe{ \item{\code{sampleNames(result)}}{Returns a vector of sample names present in the data set.}} \describe{ \item{\code{actualOutcome(result)}}{Returns the known outcome of each sample.}} \describe{ \item{\code{models(result)}}{A \code{list} of the models fitted for each training.}} \describe{ \item{\code{finalModel(result)}}{A deployable model fitted on all of the data for use on future data.}} \describe{ \item{\code{chosenFeatureNames(result)}}{A \code{list} of the features selected for each training.}} \describe{ \item{\code{predictions(result)}}{Returns a \code{DataFrame} which has columns with test sample, cross-validation and prediction information.}} \describe{ \item{\code{performance(result)}}{Returns a \code{list} of performance measures. This is empty until \code{calcCVperformance} has been used.}} \describe{ \item{\code{tunedParameters(result)}}{Returns a \code{list} of tuned parameter values. If cross-validation is used, this list will be large, as it stores chosen values for every iteration.}} \describe{ \item{\code{totalPredictions(result)}}{A single number representing the total number. of predictions made during the cross-validation procedure.}} } \examples{ #if(require(sparsediscrim)) #{ data(asthma) classified <- crossValidate(measurements, classes, nRepeats = 5) class(classified) #} } \author{ Dario Strbenac }