% Generated by roxygen2: do not edit by hand % Please edit documentation in R/interactorDifferences.R \name{interactorDifferences} \alias{interactorDifferences} \alias{interactorDifferences,matrix-method} \alias{interactorDifferences,DataFrame-method} \alias{interactorDifferences,MultiAssayExperiment-method} \title{Convert Individual Features into Differences Between Binary Interactors Based on Known Sub-networks} \usage{ \S4method{interactorDifferences}{matrix}(measurements, ...) \S4method{interactorDifferences}{DataFrame}( measurements, featurePairs = NULL, absolute = FALSE, verbose = 3 ) \S4method{interactorDifferences}{MultiAssayExperiment}(measurements, useFeatures = "all", ...) } \arguments{ \item{measurements}{Either a \code{\link{matrix}}, \code{\link{DataFrame}} or \code{\link{MultiAssayExperiment}} containing the training data. For a \code{matrix}, the rows are samples, and the columns are features.} \item{...}{Variables not used by the \code{matrix} nor the \code{MultiAssayExperiment} method which are passed into and used by the \code{DataFrame} method.} \item{featurePairs}{A object of type \code{\link{Pairs}}.} \item{absolute}{If TRUE, then the absolute values of the differences are returned.} \item{verbose}{Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3.} \item{useFeatures}{If \code{measurements} is a \code{MultiAssayExperiment}, \code{"all"} or a two-column table of features to use. If a table, the first column must have assay names and the second column must have feature names found for that assay. \code{"clinical"} is also a valid assay name and refers to the clinical data table.} } \value{ An object of class \code{\link{DataFrame}} with one column for each interactor pair difference and one row for each sample. Additionally, \code{mcols(resultTable)} prodvides a \code{\link{DataFrame}} with a column named "original" containing the name of the sub-network each meta-feature belongs to. } \description{ This conversion is useful for creating a meta-feature table for classifier training and prediction based on sub-networks that were selected based on their differential correlation between classes. } \details{ The pairs of features known to interact with each other are specified by \code{networkSets}. } \examples{ pairs <- Pairs(rep(c('A', 'G'), each = 3), c('B', 'C', 'D', 'H', 'I', 'J')) # Consistent differences for interactors of A. measurements <- matrix(c(5.7, 10.1, 6.9, 7.7, 8.8, 9.1, 11.2, 6.4, 7.0, 5.5, 3.6, 7.6, 4.0, 4.4, 5.8, 6.2, 8.1, 3.7, 4.4, 2.1, 8.5, 13.0, 9.9, 10.0, 10.3, 11.9, 13.8, 9.9, 10.7, 8.5, 8.1, 10.6, 7.4, 10.7, 10.8, 11.1, 13.3, 9.7, 11.0, 9.1, round(rnorm(60, 8, 0.3), 1)), nrow = 10) rownames(measurements) <- paste("Patient", 1:10) colnames(measurements) <- LETTERS[1:10] interactorDifferences(measurements, pairs) } \references{ Dynamic modularity in protein interaction networks predicts breast cancer outcome, Ian W Taylor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull, Tony Pawson, Quaid Morris and Jeffrey L Wrana, 2009, \emph{Nature Biotechnology}, Volume 27 Issue 2, \url{https://www.nature.com/articles/nbt.1522}. } \author{ Dario Strbenac }