% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/interactorDifferences.R
\name{interactorDifferences}
\alias{interactorDifferences}
\alias{interactorDifferences,matrix-method}
\alias{interactorDifferences,DataFrame-method}
\alias{interactorDifferences,MultiAssayExperiment-method}
\title{Convert Individual Features into Differences Between Binary Interactors
Based on Known Sub-networks}
\usage{
\S4method{interactorDifferences}{matrix}(measurements, ...)

\S4method{interactorDifferences}{DataFrame}(
  measurements,
  featurePairs = NULL,
  absolute = FALSE,
  verbose = 3
)

\S4method{interactorDifferences}{MultiAssayExperiment}(measurements, useFeatures = "all", ...)
}
\arguments{
\item{measurements}{Either a \code{\link{matrix}}, \code{\link{DataFrame}}
or \code{\link{MultiAssayExperiment}} containing the training data.  For a
\code{matrix}, the rows are samples, and the columns are features.}

\item{...}{Variables not used by the \code{matrix} nor the
\code{MultiAssayExperiment} method which are passed into and used by the
\code{DataFrame} method.}

\item{featurePairs}{A object of type \code{\link{Pairs}}.}

\item{absolute}{If TRUE, then the absolute values of the differences are
returned.}

\item{verbose}{Default: 3. A number between 0 and 3 for the amount of
progress messages to give.  This function only prints progress messages if
the value is 3.}

\item{useFeatures}{If \code{measurements} is a \code{MultiAssayExperiment},
\code{"all"} or a two-column table of features to use. If a table, the first column must have
assay names and the second column must have feature names found for that assay.
\code{"clinical"} is also a valid assay name and refers to the clinical data table.}
}
\value{
An object of class \code{\link{DataFrame}} with one column for each
interactor pair difference and one row for each sample. Additionally,
\code{mcols(resultTable)} prodvides a \code{\link{DataFrame}} with a column
named "original" containing the name of the sub-network each meta-feature
belongs to.
}
\description{
This conversion is useful for creating a meta-feature table for classifier
training and prediction based on sub-networks that were selected based on
their differential correlation between classes.
}
\details{
The pairs of features known to interact with each other are specified by
\code{networkSets}.
}
\examples{

  pairs <- Pairs(rep(c('A', 'G'), each = 3), c('B', 'C', 'D', 'H', 'I', 'J'))
                           
  # Consistent differences for interactors of A.                                           
  measurements <- matrix(c(5.7, 10.1, 6.9, 7.7, 8.8, 9.1, 11.2, 6.4, 7.0, 5.5,
                           3.6, 7.6, 4.0, 4.4, 5.8, 6.2, 8.1, 3.7, 4.4, 2.1,
                           8.5, 13.0, 9.9, 10.0, 10.3, 11.9, 13.8, 9.9, 10.7, 8.5,
                           8.1, 10.6, 7.4, 10.7, 10.8, 11.1, 13.3, 9.7, 11.0, 9.1,
                           round(rnorm(60, 8, 0.3), 1)), nrow = 10)
                         
  rownames(measurements) <- paste("Patient", 1:10)
  colnames(measurements) <- LETTERS[1:10]
  
  interactorDifferences(measurements, pairs)

}
\references{
Dynamic modularity in protein interaction networks predicts
breast cancer outcome, Ian W Taylor, Rune Linding, David Warde-Farley,
Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull, Tony Pawson, Quaid
Morris and Jeffrey L Wrana, 2009, \emph{Nature Biotechnology}, Volume 27
Issue 2, \url{https://www.nature.com/articles/nbt.1522}.
}
\author{
Dario Strbenac
}