man/PLSDA.Rd
883f7f27
 % Generated by roxygen2: do not edit by hand
 % Please edit documentation in R/PLSDA_class.R
8db793ae
 \name{PLSDA}
883f7f27
 \alias{PLSDA}
d0f81a51
 \title{Partial least squares discriminant analysis}
8db793ae
 \usage{
46c79734
 PLSDA(number_components = 2, factor_name, pred_method = "max_prob", ...)
8db793ae
 }
56a019fe
 \arguments{
09388373
 \item{number_components}{(numeric, integer) The number of PLS components. The default is \code{2}.\cr}
a110b7e7
 
d0f81a51
 \item{factor_name}{(character) The name of a sample-meta column to use.}
a110b7e7
 
09388373
 \item{pred_method}{(character) Prediction method. Allowed values are limited to the following: \itemize{ \item{\code{"max_yhat"}: The predicted group is selected based on the largest value of y_hat.}\item{\code{"max_prob"}: The predicted group is selected based on the largest probability of group membership.}} The default is \code{"max_prob"}.}
46c79734
 
d0f81a51
 \item{...}{Additional slots and values passed to \code{struct_class}.}
56a019fe
 }
7af536f9
 \value{
5d51daa4
 A  \code{PLSDA} object with the following \code{output} slots:
 \tabular{ll}{
09b8b680
 \code{scores} \tab          (DatasetExperiment)  \cr
5d51daa4
 \code{loadings} \tab          (data.frame)  \cr
 \code{yhat} \tab          (data.frame)  \cr
 \code{design_matrix} \tab          (data.frame)  \cr
 \code{y} \tab          (data.frame)  \cr
 \code{reg_coeff} \tab          (data.frame)  \cr
 \code{probability} \tab          (data.frame)  \cr
 \code{vip} \tab          (data.frame)  \cr
 \code{pls_model} \tab          (list)  \cr
 \code{pred} \tab          (data.frame)  \cr
 \code{threshold} \tab          (numeric)  \cr
09b8b680
 \code{sr} \tab          (data.frame) Selectivity ratio for a variable represents a measure of a variable's importance in the PLS model. The output data.frame contains a column of selectivity ratios, a column of p-values based on an F-distribution and a column indicating significance at p < 0.05. \cr
 \code{sr_pvalue} \tab          (data.frame) A p-value computed from the Selectivity Ratio based on an F-distribution. \cr
5d51daa4
 }
7af536f9
 }
883f7f27
 \description{
46c79734
 PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. The Discriminant Analysis variant uses group labels in the response variable. For >2 groups a 1-vs-all approach is used. Group membership can be predicted for test samples based on a probability estimate of group membership, or the estimated y-value.
d0f81a51
 }
 \details{
09388373
 This object makes use of functionality from the following packages:\itemize{  \item{\code{pls}}}
883f7f27
 }
09388373
 \section{Inheritance}{
 
 A \code{PLSDA} object inherits the following \code{struct} classes: \cr\cr
55546c0b
 \verb{[PLSDA]} >> \verb{[PLSR]} >> \verb{[model]} >> \verb{[struct_class]}
09388373
 }
 
5dcc4dc2
 \examples{
09388373
 M = PLSDA(
       number_components = 2,
       factor_name = "V1",
       pred_method = "max_prob")
 
a110b7e7
 M = PLSDA('number_components'=2,factor_name='Species')
5dcc4dc2
 }
d0f81a51
 \references{
32654e96
 Liland K, Mevik B, Wehrens R (2023). \emph{pls: Partial Least Squares and
09388373
 Principal Component Regression}. R package version 2.8-3,
32654e96
 \url{https://CRAN.R-project.org/package=pls}.
d0f81a51
 
32654e96
 Perez NF, Ferre J, Boque R (2009). "Calculation of the reliability of
 classification in discriminant partial least-squares binary
 classification." \emph{Chemometrics and Intelligent Laboratory Systems},
 \emph{95}(2), 122-128.
d0f81a51
 
32654e96
 Barker M, Rayens W (2003). "Partial least squares for discrimination."
 \emph{Journal of Chemometrics}, \emph{17}(3), 166-173.
d0f81a51
 }