bfc38d08 |
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tSNE_class.R
|
8db793ae |
\name{tSNE}
|
bfc38d08 |
\alias{tSNE}
|
d0f81a51 |
\title{tSNE}
|
8db793ae |
\usage{
|
a110b7e7 |
tSNE(
dims = 2,
perplexity = 30,
max_iter = 100,
theta = 0.5,
check_duplicates = FALSE,
init = NULL,
eta = 200,
...
)
|
8db793ae |
}
|
56a019fe |
\arguments{
|
09388373 |
\item{dims}{(numeric) The number of tSNE dimensions computed. The default is \code{2}.\cr}
|
a110b7e7 |
|
09388373 |
\item{perplexity}{(numeric) Perplexity parameter. The default is \code{30}.\cr}
|
a110b7e7 |
|
09388373 |
\item{max_iter}{(numeric) The maximum number of tSNE iterations. The default is \code{100}.\cr}
|
a110b7e7 |
|
09388373 |
\item{theta}{(numeric) Speed/accuracy trade-off. A value of 0 gives an exact tSNE. The default is \code{0.5}.\cr}
|
a110b7e7 |
|
09388373 |
\item{check_duplicates}{(logical) Check for duplicates. Allowed values are limited to the following: \itemize{ \item{\code{"TRUE"}: Checks for the presence of exact duplicate samples.}\item{\code{"FALSE"}: Does not check for exact duplicate samples.}} The default is \code{FALSE}.\cr}
|
a110b7e7 |
|
d0f81a51 |
\item{init}{(NULL, data.frame, DatasetExperiment) A set of coordinates for initialising the tSNE algorithm. NULL uses random initialisation. The default is \code{NULL}.}
|
a110b7e7 |
|
09388373 |
\item{eta}{(numeric) The learning rate parameter. The default is \code{200}.\cr}
|
a110b7e7 |
|
d0f81a51 |
\item{...}{Additional slots and values passed to \code{struct_class}.}
|
56a019fe |
}
|
7af536f9 |
\value{
|
5d51daa4 |
A \code{tSNE} object with the following \code{output} slots:
\tabular{ll}{
\code{Y} \tab (DatasetExperiment) \cr
}
|
7af536f9 |
}
|
bfc38d08 |
\description{
|
d0f81a51 |
t-Distributed Stochastic Neighbor Embedding.
|
a110b7e7 |
}
\details{
|
09388373 |
This object makes use of functionality from the following packages:\itemize{ \item{\code{Rtsne}}}
|
bfc38d08 |
}
|
09388373 |
\section{Inheritance}{
A \code{tSNE} object inherits the following \code{struct} classes: \cr\cr
|
55546c0b |
\verb{[tSNE]} >> \verb{[model]} >> \verb{[struct_class]}
|
09388373 |
}
|
5dcc4dc2 |
\examples{
|
09388373 |
M = tSNE(
dims = 2,
perplexity = 30,
max_iter = 1000,
theta = 0.5,
check_duplicates = FALSE,
init = NULL,
eta = 200)
|
5dcc4dc2 |
M = tSNE()
}
|
d0f81a51 |
\references{
|
09388373 |
Krijthe JH (2015). \emph{Rtsne: T-Distributed Stochastic Neighbor Embedding
using Barnes-Hut Implementation}. R package version 0.17,
\url{https://github.com/jkrijthe/Rtsne}.
|
32654e96 |
van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data
Using t-SNE." \emph{Journal of Machine Learning Research}, \emph{9}, 2579-2605.
|
d0f81a51 |
|
32654e96 |
van der Maaten L (2014). "Accelerating t-SNE using Tree-Based
Algorithms." \emph{Journal of Machine Learning Research}, \emph{15}, 3221-3245.
|
d0f81a51 |
}
|