% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DFA_class.R \name{DFA} \alias{DFA} \title{Discriminant Factor Analysis} \usage{ DFA(factor_name, number_components = 2, ...) } \arguments{ \item{factor_name}{(character) The name of a sample-meta column to use.} \item{number_components}{(numeric, integer) The number of DFA components calculated. The default is \code{2}.\cr} \item{...}{Additional slots and values passed to \code{struct_class}.} } \value{ A \code{DFA} object with the following \code{output} slots: \tabular{ll}{ \code{scores} \tab (DatasetExperiment) \cr \code{loadings} \tab (data.frame) \cr \code{eigenvalues} \tab (data.frame) \cr \code{that} \tab (DatasetExperiment) \cr } } \description{ Discriminant Factor Analysis (DFA) is a supervised classification method. Using a linear combination of the input variables, DFA finds new orthogonal axes (canonical values) to minimize the variance within each given class and maximize variance between classes. } \section{Inheritance}{ A \code{DFA} object inherits the following \code{struct} classes: \cr\cr \verb{[DFA]} >> \verb{[model]} >> \verb{[struct_class]} } \examples{ M = DFA( factor_name = "V1", number_components = 2) D = iris_DatasetExperiment() M = DFA(factor_name='Species') M = model_apply(M,D) } \references{ Manly B (1986). \emph{Multivariate Statistical Methods: A Primer}. Chapman and Hall, Boca Raton. }