% Generated by roxygen2: do not edit by hand % Please edit documentation in R/HSDEM_class.R \name{HSDEM} \alias{HSDEM} \title{Tukey's Honest Significant Difference using estimated marginal means} \usage{ HSDEM(alpha = 0.05, mtc = "fdr", formula, ...) } \arguments{ \item{alpha}{(numeric) The p-value cutoff for determining significance. The default is \code{0.05}.\cr} \item{mtc}{(character) Multiple test correction method. Allowed values are limited to the following: \itemize{ \item{\code{"bonferroni"}: Bonferroni correction in which the p-values are multiplied by the number of comparisons.}\item{\code{"fdr"}: Benjamini and Hochberg False Discovery Rate correction.}\item{\code{"none"}: No correction.}} The default is \code{"fdr"}.} \item{formula}{(formula) A symbolic description of the model to be fitted.} \item{...}{Additional slots and values passed to \code{struct_class}.} } \value{ A \code{HSDEM} object with the following \code{output} slots: \tabular{ll}{ \code{p_value} \tab (data.frame) The probability of observing the calculated statistic if the null hypothesis is true. \cr \code{significant} \tab (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold. \cr } } \description{ Tukey's HSD post hoc test is a modified t-test applied for all features to all pairs of levels in a factor. It is used to determine which groups are different (if any). A multiple test corrected p-value is computed to indicate which groups are significantly different to the others for each feature. For mixed effects models estimated marginal means are used. } \details{ This object makes use of functionality from the following packages:\itemize{ \item{\code{emmeans}} \item{\code{nlme}}} } \section{Inheritance}{ A \code{HSDEM} object inherits the following \code{struct} classes: \cr\cr \verb{[HSDEM]} >> \verb{[model]} >> \verb{[struct_class]} } \examples{ M = HSDEM( alpha = 0.05, mtc = "fdr", formula = y ~ x) D = iris_DatasetExperiment() D$sample_meta$id=rownames(D) # dummy id column M = HSDEM(formula = y~Species+ Error(id/Species)) M = model_apply(M,D) } \references{ Lenth R (2024). \emph{emmeans: Estimated Marginal Means, aka Least-Squares Means}. R package version 1.10.1, \url{https://CRAN.R-project.org/package=emmeans}. Pinheiro J, Bates D, R Core Team (2023). \emph{nlme: Linear and Nonlinear Mixed Effects Models}. R package version 3.1-164, \url{https://CRAN.R-project.org/package=nlme}. Pinheiro JC, Bates DM (2000). \emph{Mixed-Effects Models in S and S-PLUS}. Springer, New York. doi:10.1007/b98882 \url{https://doi.org/10.1007/b98882}. }