% Generated by roxygen2: do not edit by hand % Please edit documentation in R/autoscale_class.R \name{autoscale} \alias{autoscale} \title{Autoscaling} \usage{ autoscale(mode = "data", ...) } \arguments{ \item{mode}{(character) Mode of action. Allowed values are limited to the following: \itemize{ \item{\code{"data"}: Autoscaling is applied to the data matrix only.}\item{\code{"sample_meta"}: Autoscaling is applied to the sample_meta data only.}\item{\code{"both"}: Autoscaling is applied to both the data matrix and the meta data.}} The default is \code{"data"}.} \item{...}{Additional slots and values passed to \code{struct_class}.} } \value{ A \code{autoscale} object with the following \code{output} slots: \tabular{ll}{ \code{autoscaled} \tab (DatasetExperiment) \cr \code{mean_data} \tab (numeric) \cr \code{sd_data} \tab (numeric) \cr \code{mean_sample_meta} \tab (numeric) \cr \code{sd_sample_meta} \tab (numeric) \cr } } \description{ Each variable/feature is mean centred and scaled by the standard deviation. The transformed variables have zero-mean and unit-variance. } \section{Inheritance}{ A \code{autoscale} object inherits the following \code{struct} classes: \cr\cr \verb{[autoscale]} >> \verb{[model]} >> \verb{[struct_class]} } \examples{ M = autoscale( mode = "data") D = iris_DatasetExperiment() M = autoscale() M = model_train(M,D) M = model_predict(M,D) }